
Extended version of invited plenary talks at the

Conference of the International Association for Relativistic Dynamics,
Washington, D.C., June 2002

International Congress of Mathematicians,
Hong Kong, August 2002

International Conference on Physical Interpretation of Relativity Theories,
London, September 2002

ISO-, GENO-, HYPER-MECHANICS FOR MATTER, THEIR

ISODUALS, FOR ANTIMATTER, AND THEIR NOVEL

APPLICATIONS IN PHYSICS, CHEMISTRY AND

BIOLOGY

Ruggero Maria Santilli

Institute for Basic Research
P. O. Box 1577

Palm Harbor, FL 34682, U.S.A.
E-address ibr@gte.net

Web Site http://www.i-b-r.org

December 22, 2002
In press at the

Journal of Dynamical Systems and Geometric Theories



ISO-, GENO-, HYPER-MECHANICS FOR MATTER, THEIR
ISODUALS, FOR ANTIMATTER, AND THEIR NOVEL
APPLICATIONS IN PHYSICS, CHEMISTRY AND BIOLOGY

Ruggero Maria Santilli

TABLE OF CONTENT

ABSTRACT 3

1. INTRODUCTION 4

2. CONSTRUCTION OF ISODUAL MECHANICS FROM CLASSICAL
ANTIMATTER 5

2.1: The scientific unbalance caused by antimatter
2.2: Elements of isodual mathematics
2.3: Isodual spaces and geometries
2.4: Isodual Lie theory
2.5: Isodual Newtonian Mechanics
2.6: Isodual Hamiltonian Mechanics
2.7: Isodual Quantum Mechanics
2.8: Isodual special relativity
2.9: Origin of the isodual theory in Dirac’s equation
2.10: Experimental verifications and applications

3. CONSTRUCTION OF ISOMECHANICS FROM NONLOCAL,
NONLINEAR AND NONPOTENTIAL INTERACTIONS 14

3.1: The scientific unbalance caused by nonlocal interactions
3.2: Catastrophic inconsistencies of noncanonical-nonunitary theories
3.3: Elements of isomathematics
3.4: Isotopologies, isospaces and isogeometries
3.5: Lie-Santilli isotheory and its isodual
3.6: Iso-Newtonian Mechanics and its isodual
3.7: Iso-Hamiltonian Mechanics and its isodual
3.8: Isotopic Branch of nonrelativistic Hadronic Mechanics and its isodual
3.9: Invariance of isotopic theories
3.10: Simple construction of isotheories
3.11: Isorelativity and its isodual
3.12: Isorelativistic Hadronic Mechanics and its isodual
3.13: Isogravitation, iso-grand-unification and isocosmology

1



3.14: Experimental verifications and scientific applications
3.15: Industrial applications to new clean energies and fuels

4. CONSTRUCTION OF GENOMECHANICS FROM IRREVERSIBLE
PROCESSES 52

4.1: The scientific unbalance caused by irreversibility
4.2: The forgotten legacy of Newton, Lagrange and Hamilton
4.3: Catastrophic inconsistencies of formulations with external terms
4.4: Initial versions of irreversible mathematics
4.5: Elements of genomathematics
4.6: Lie-Santilli genotheory and its isodual
4.7: Geno-Newtonian Mechanics and its isodual
4.8: Geno-Hamiltonian mechanics and its isodual
4.9: Genotopic Branch of Hadronic Mechanics and its isodual
4.10: Invariance of genotheories
4.11: Simple construction of genotheories
4.12: Genorelativity and its isodual
4.13: Experimental verifications and applications

5. CONSTRUCTION OF HYPERMECHANICS FROM BIOLOGICAL
SYSTEMS 68

5.1: The scientific unbalance caused by biological systems
5.2: The multivalued complexity of biological systems
5.3: Elements of hypermathematics
5.4: The complexity of hypertime and hyperrelativity for biological
systems
5.5: Eric Trell’s hyperbiological structures
5.6: The lack of final character of all scientific theories

ACKNOWLEDGMENTS 72

REFERENCES 73

2



ABSTRACT

Pre-existing numbers, related mathematics and consequential physical theories are
generally used for the treatment of new scientific problems. In this memoir we outline
the research conducted by various mathematicians, physicists and chemists over the past
two decades who have shown that the inverse approach, the construction of new numbers,
related new mathematics and consequential new physical theories from open physical,
chemical and biological problems, leads to new intriguing formulations of increasing com-
plexity called iso-, geno- and hyper-mathematics for the treatment of matter in reversible,
irreversible and multi-valued conditions, respectively, plus anti-isomorphic images called
isodual mathematics for the treatment of antimatter.

These novel formulations are based on new numbers characterized by the lifting of
the multiplicative unit of ordinary fields (with characteristic zero) from its traditional
value +1 to: (1) invertible, Hermitean and single-valued units for isomathematics; (2) in-
vertible, non-Hermitean and single-valued units for genomathematics; and (3) invertible,
non-Hermitean and multi-valued units for hypermathematics; with corresponding liftings
of the conventional associative product and consequential lifting of all branches of math-
ematics admitting a (left and right) multiplicative unit. An anti-Hermitean conjugation
applied to the totality of quantities and their operation of the preceding mathematics
characterizes the isodual mathematics.

The above new mathematics are then used for corresponding liftings of Newtonian,
Hamiltonian and quantum mechanics, today known as iso-, geno-, hyper-mechanics for the
description of matter and their isoduals for antimatter, with compatible liftings of geome-
tries and symmetries, and, inevitable of contemporary relativities. The above new body of
knowledge is also known as hadronic mechanics, superconductivity and chemistry, wherein
conventional Hamiltonians represent conventional, linear, local and potential interactions
among point particles, while generalized units provide an invariant representation of ex-
tended, nonspherical and deformable particles under additional nonlinear, nonlocal and
nonpotential interactions due to deep mutual penetration of wavepackets at short dis-
tances. Whenever the latter effects are ignorable due to large distances, conventional
units, mathematics and relativities are recovered identically.

We finally outline the novel scientific and industrial verifications and applications
permitted by the new mathematics and relativities in physics, chemistry and biology,
including numerous experimental verifications, and applications for new clean energies
and fuels which are prohibited by contemporary mechanics, special relativity and related
mathematics.
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1. INTRODUCTION

Customarily, new problems in physics, chemistry, biology and other quantitative sciences
are treated via pre-existing mathematics. Such an approach is certainly valuable at the
initiation of new studies. However, with the advancement of scientific knowledge such an
approach historically lead to serious limitations and controversies due to the insufficiency
of the used mathematics for the problem at hand.

On historical grounds, the above occurrence is illustrated by the fact that the mathe-
matics so effective for the study of planetary systems (Hamiltonian vector fields, Hamilton-
Jacobi equations, etc.) resulted to be inadequate for the study of the atomic structure. In
fact, the latter mandated the use of a new mathematics, that based on infinite dimensional
Hilbert spaces over a field of complex numbers, which has no application for planetary
mechanics.

Similar occurrences exist in contemporary science due to the continued use for new
scientific problems of pre-existing mathematics proved to be so effective in preceding
scientific problems. This is the case for:

(1) the lack of a classical formulation of antimatter, due to the inapplicability of
conventional mathematics so effective for the classical treatment of matter;

(2) the lack of quantitative studies of nonlocal-integral interactions as occurring in
chemical valence bonds, due to the inapplicability of conventional mathematics because
of its strictly local-differential character;

(3) the lack of representation of the irreversible and multi-valued nature of biological
systems, due to insufficiencies of both conventional mathematics and hypermathematics
as currently formulated; and other cases.

In this memoir we outline research conducted by numerous mathematicians, physicists
and chemists over the past two decades showing that the construction of new mathematics
from open scientific problems does indeed permit new, intriguing scientific horizons with
far reaching implications in mathematics as well as quantitative science in general.

As we shall see, the emerging new mathematics are based on progressive generaliza-
tions of the multiplicative unit +1 into everywhere invertible and sufficiently smooth, but
otherwise arbitrary quantities (such as numbers, matrices or integro-differential operators)
with corresponding generalizations of the associative product, thus implying correspond-
ing generalizations of all branches of conventional mathematics (hereinafter defined as the
mathematics based on the multiplicative left and right unit +1 over a field of characteristic
zero).

In this memoir we also show that the above new mathematics imply certain liftings
of Newtonian, Hamiltonian and quantum mechanics with corresponding liftings of ge-
ometries and symmetries and, inevitably, of contemporary relativities. In fact, all efforts
outlined in this memoir were aimed at the construction of new mechanics today known as
iso-, geno-, and hyper-mechanics for the description of matter in conditions of increasing
complexity, and corresponding isodual mechanics for the description of antimatter. All
new scientific and industrial applications can then be reduced to a few primitive mechan-
ical or, more properly, relativity axioms.
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Alternatively, an objective of this memoir is to show that no truly novel scientific ad-
vance is possible without truly novel mechanics. In turn, no mechanics can be considered
as truly new without new mathematics. Finally, no mathematics can possibly be truly
new without new numbers. This illustrates the reason why, out of the rather vast scientific
studies over three decades reviewed in this memoir, primary efforts were devoted to the
search of new numbers from which new ,mathematics, new relativities and new scientific
and industrial applications uniquely follow.

The reader should be aware that the literature in the topic of this memoir is rather
vast because it encompasses numerous studies in pure mathematics, applications in vari-
ous quantitative sciences, several experimental verifications as well as rapidly expanding
new industrial applications. As a result, in this paper we can only review the most funda-
mental aspects of the new formulations. A technical knowledge of the new advances can
only be achieved via the study of the quoted literature. To avoid a prohibitive length,
references have been restricted to contributions specifically based on the lifting of the
unit with a compatible lifting of the product. Regrettably, we have to defer to the spe-
cialized literature the treatment of connections with numerous other studies. References
are grouped by main fields indicated with square brackets (e.g., [5]), while individual
references are indicated with curved brackets (e.g., (201)). Except for monographs, pro-
ceedings and reprint volumes, the titles of the individual contributions are not provide to
avoid a prohibitive length, as well as because of their lack of general availability in the
physics literature without an extensive library search.

The reader should be aware that the new mathematics and their applications are still
in their initial stages and so much remains to be done. The author would be grateful
for any comment, as well as for the indication by interested colleagues of mathematical
or or other references in the origination of the new formulations which have escaped his
knowledge.

2. CONSTRUCTION OF ISODUAL MECHANICS FROM CLAS-
SICAL ANTIMATTER

2.1: The scientific unbalance caused by antimatter. One of the biggest scientific
unbalances of the 20-th century has been the treatment of matter at all possible levels,
from Newtonian to quantum mechanics, while antimatter was solely treated at the level
of second quantization. In particular, the lack of a consistent classical treatment of anti-
matter left fundamental open problems, such as the inability to study whether a far away
galaxy or quasar is made up of matter or of antimatter.

It should be indicated that classical studies of antimatter simply cannot be done by
merely reversing the sign of the charge, because of inconsistencies due to the existence of
only one quantization channel. In fact, the quantization of a classical particle with the
reversed sign of the charge leads to a particle (rather than a charge conjugated antiparticle)
with the wrong sign of the charge.

The origin of this scientific unbalance was not of physical nature, and was instead due
to the lack of a mathematics suitable for the classical treatment of antimatter in such a
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Figure 1: An illustration of the first scientific unbalance of the 20-th century, the inability due
to the lack of adequate mathematics to conduct quantitative studies as to whether far away
galaxies and quasars are made up of matter or of antimatter.

way to be compatible with charge conjugation at the quantum level. Charge conjugation
is an anti-homomorphism. Therefore, a necessary condition for a mathematics to be
applicable for the classical treatment of antimatter is that of being anti-homomorphic, or,
better, anti-isomorphic to conventional mathematics.

The absence of the needed mathematics is confirmed by the fact that classical treat-
ments of antimatter require fields, functional analysis, differential calculus, topology, ge-
ometries, algebras, groups, etc. which are anti-isomorphic to conventional formulations.
The absence in the mathematics of the 20-th century of such a mathematics then man-
dated its construction as requested by the physical reality here considered (rather than
adapting physical reality to pre-existing mathematics).
2.2: Elements of isodual mathematics. A novel mathematics verifying the above
conditions was proposed by R. M. Santilli in Ref. (11) of 1985 and then developed in
various works (see Refs.(12, 14,15, 54,55,160,161) and [3]).

The fundamental idea is the assumption of a negative-definite, left and right mul-
tiplicative unit, called isodual unit, and denoted Id, where I denotes the conventional
positive-definite unit, I > 0,

Id = −I < 0, (2.1)

with corresponding reformulation of the conventional associative product A × B among
generic quantities A, B (such as numbers, vector fields, operators, etc.) into the form

A×dB = A× (Id)−1 ×B, (2.2)

under which Id is the correct left and right multiplicative unit of the theory,

A×dId = Id×dd
A = A, (2.3)
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for all elements A of the considered set.
More generally, isodual mathematics is given by the image of a given mathematics

admitting a left and right multiplicative unit under the following isodual map

A(x, ...) → Ad(xd, ...) = −A†(−x†, ...). (2.4)

when applied to the totality of conventional quantities and their operations, with no excep-
tion of any type. In this paper we cannot possibly review the entire isodual mathematics,
and must restrict ourselves to an elementary review of only the foundations.

DEFINITION 2.1: Let F = F (a, +,×) be a field of characteristic zero representing
real numbers F = R(n, +,×), a = n, complex numbers F = C(c, +,×), a = c, or quater-
nionic numbers F = Q(q, +,×), a = q, with conventional associative, distributive and
commutative sum a + b = c ∈ F , associative and distributive product a× b = c ∈ F , left
and right additive unit 0, a + 0 = 0 + a = a ∈ F , and left and right multiplicative unit
I > 0, a× I = I × a = a, ∀a, b ∈ F . The isodual fields (first introduced in Refs. (11,12))
are rings F d = F d(ad, +d,×d) with isodual numbers

ad = −a†, (2.5)

associative, distributive and commutative isodual sum

ad +d bd = −(a + b)† = cd ∈ F d, (2.6)

associative and distributive isodual product

ad ×d bd = ad × (Id)−1 × bd = cd ∈ F d, (2.7)

additive isodual unit
0d = 0, ad +d 0d = 0d +d ad = ad, (2.8)

and isodual multiplicative unit

Id = −I†, ad ×d Id = Id ×d ad = ad,∀ad, bd ∈ F d. (2.9)

LEMMA 2.1 (12): Isodual fields are fields (namely, isodual field verify all axioms of a
field with characteristic zero).

The above lemma establishes the property (first identified in Refs. (11,12)) that the
axioms of a field do not require that the multiplicative unit be necessary positive-definite,
because it can also be negative-definite. The proof of the following property is equally
simple.

LEMMA 2.2 (12): Fields (of characteristic zero) and their isodual images are anti-
isomorphic to each other.
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Lemmas 2.1 and 2.2 illustrate the origin of the name ”isodual mathematics.” In fact,
the needed mathematics must constitute a ”dual” image of conventional mathematics,
while the prefix ”iso” is used in its Greek meaning of preserving the original axioms.

It is evident that for real numbers we have nd = −n, while for complex numbers we
have cd = (n1 + i×n2)

d = −n1 + i×n2 = −c̄, with a similar formulation for quaternions.

DEFINITION 2.2 (12): A quantity is called isoselfdual when it coincides with its
isodual.

It is easy to verify that the imaginary unit is isoselfdual because

id = −ī = i. (2.10)

As we shall see, isoselfduality is a new symmetry with rather profound implications, e.g.,
in cosmology.

It is evident that, for consistency, all operations of numbers must be subjected to
isoduality. This implies: the isodual powers

(ad)nd

= ad ×d ad ×d ad... (2.11)

(n times with n an integer); the isodual square root

ad(1/2)d

= −
√
−a†

†
, ad(1/2)d ×d ad(1/2)d

= ad, 1d(1/2)d

= −i; (2.12)

the isodual quotient

ad/dbd = −(a†/b†) = cd, bd ×d cd = ad; etc. (2.13)

An important property for the characterization of antimatter is that isodual fields have
a negative–definite norm, called isodual norm (12)

|ad|d = |a†| × Id = −(aa†)1/2 < 0, (2.14)

where |...| denotes the conventional norm. For isodual real numbers nd we have the
isodual norm |nd|d = −|n| < 0 , the isodual norm for for isodual complex numbers
|cd|d = −(n2

1 + n2
2)

1/2, etc.
Recall that functional analysis is defined over a field. Therefore, the lifting of fields

into isodual fields requires, for necessary condition of consistency, the formulation of the
isodual functional analysis (54). We here merely recall that

sind θd = − sin(−θ), cosd θd = − cos(−θ), (2.15a)

cosd 2d θd +d sind 2d θd = 1d = −1; (2.15b)

the isodual hyperbolic functions

sinhd wd = − sinh(−w), coshd wd = − cosh(−w), (2.16a)
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coshd 2d wd −d sinhd 2d wd = 1d = −1; (2.16b)

the isodual logarithm
logd nd = −log(−n). (2.17)

Particularly important is the isodual exponentiation which can be written

edAd

= Id + Ad/d1!d + Ad ×d Ad/d2!d + ... = −eA† , (2.18)

Other properties of the isodual functional analysis can be easily derived by the interested
reader (see also Refs. (14,21,22).

It is little known that the differential and integral calculi are indeed dependent on the
assumed basic unit. In fact, the lifting of I into Id and of F into F d implies the isodual
differential calculus, first introduced in Ref. (14), which is characterized by the isodual
differentials

ddxd = dx, (2.19)

with corresponding isodual derivatives

∂dfd(xd)/d∂dxd = −∂f̄(−x̄)/∂(−x̄), (2.20)

and other isodual properties interested readers can easily derive. Note that the differential
is isoselfdual.

2.3: Isodual spaces and geometries. Conventional vector and metric spaces are
defined over a field. It is then evident that the isoduality of fields requires, for consistency,
a corresponding isoduality of vector, metric and all other) spaces.

DEFINITION 2.3: Let S = S(x, g, R) be an N–dimensional metric space with real-
valued local coordinates x = {xk}, k = 1, 2, ..., N , nowhere degenerate, sufficiently
smooth, real–valued and symmetric metric g(x, ...) and related line element x2 = (xt ×
g× x)× I = (xi× gij × xj)× I ∈ R. The isodual spaces, first introduced in Refs. (11,14),
are vector spaces Sd(xd, gd, Rd) with isodual coordinates xd = −xt where t denotes
transposed, isodual metric gd(xd, ...) = −gt(−xt, ...), and isodual line element

(xd)2d

= (x2)d = (−xt)2d = (xd)×d (gd)×d (xtd)×d Id =

= [(−xj)(−×)(−gji)(−×)(−xi)](−×)(−I) = −x2 ∈ Rd. (2.21)

The isodual Euclidean space Ed(xd, δd, Rd) is a particular case of Sd when gd
ij = δd

ij. The
isodual distance on Ed is negative definite and it is given by Dd = −D, where D is
the conventional (positive-definite) distance on E. The isodual sphere on a 3-dimensional
isodual space Ed is the perfect sphere with negative radius and expression rd2d = [(xd2d

1 +d

x2d
2 +d x2d

3 ]×d Id = −r2 ∈ Rd. The isodual Minkowskian, isodual Riemannian and isodual
symplectic geometries can be defined accordingly (14,15).

2.4: Isodual Lie theory. Lie’s theory in its conventional formulation in mathematics
or physics can only characterize matter at the classical level, thus preventing the study
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of antimatter via fundamental tools so familiar for matter, such as symmetries and con-
servation laws.

To overcome such an unbalance, R. M. Santilli proposed in the isodual Lie theory
in the original proposal of isoduality (11), whose explicit form is left to the interested
reader. We merely indicate that the isoduality of Lie’s theory were proposed also for the
classification of all possible realizations of abstract simple Lie algebras.

From the above rudiments interested readers can construct the rest of the isodual
mathematics, including: isodual topologies, isodual manifolds, etc. Particularly impor-
tant for physical applications is the isodual Lie theory (first introduced in Ref. (11) (see
also (14,22)), including isodual universal enveloping associative algebras, isodual Lie al-
gebras, isodual Lie groups, isodual symmetries, and isodual representation theory, which
we cannot review here for brevity.

The main physical theories characterized by isodual mathematics can be outlined as
follows.

2.5: Isodual Newtonian Mechanics. To resolve the scientific unbalance between
matter and antimatter indicated earlier, the isodual mathematics has first permitted a
Newtonian characterization of antimatter consistent with all available experimental data
(14,22). Then, isodual mathematics has identified a new quantization channel (which is
distinct from conventional symplectic quantization) leading to an operator formulation
which is equivalent to charge conjugation (14,16,21).

We first have the isodual Newton equations

md ×d ddvd

ddtd
= F d(td, xd, vd), vd =

ddxd

ddtd
. (2.22)

and related formulations known under the name of isodual Newtonian Mechanics.

2.6: Isodual Hamiltonian Mechanics. The direct analytic representation of the above
equations are permitted by the following isodual action functional (14) (for the case when
the Newtonian force F is representable with a potential, see below for nonhamiltonian
interactions)

δdAd(td, xd) = δd
∫ d

(pd ×d ddxd −d Hd ×d ddtd) = 0, (2.23)

which characterizes the following the isodual Hamilton equations (14)

ddxd

ddtd
=

∂dHd

∂dpd
= pd,

ddpd

ddtd
= −∂dHd

∂dxd
, (2.24)

with corresponding isodual Hamilton-Jacobi equations

∂dAd

∂dtd
+d Hd = 0,

∂dAd

∂dxdk
−d pd

k = 0, k = 1, 2, 3. (2.25)

Again, interested readers are encouraged to verify that the above isodual Hamiltonian
Mechanics does indeed represent correctly all classical experimental data on antimatter.
.
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2.7: Isodual Quantum Mechanics. The isoduality of the naive (or symplectic) quan-
tization can be expressed via the elementary map (14,16,21,55) based on the isodual
Planck’s constant h̄s = Id = −1

Ad(td, xd) → −id ×d Id ×d Lndψd(td, xd), (2.26)

which can be applied to the isodual Hamilton-Jacobi equations yielding the expressions

∂dAd

∂dtd
+d Hd = 0 → −id ×d Id ×d ∂dψd

∂dtd
+d ψd ×d Hd = 0, (2.27a)

∂dAd

∂dxdk
−d pd

k = 0 → −id ×d Id ∂ψd

∂dtd
−d ψd ×d pd

k = 0, (2.27b)

Therefore, isodual mathematics characterizes the novel isodual quantum mechanics,
also known as the isodual branch of hadronic mechanics, which can be expressed on the
isodual Hilbert space Hd with isodual states |ψ >d= − < ψd| and isodual inner product
< ψd| ×d |ψd > over the isodual field Cd with basic isodual Schroedinger equations (for a
Hermitean Hamiltonians H)

id×d < ψd|∂d/d∂dtd = − < ψd| ×d Hd = − < ψd| ×d Ed, (2.28a)

− < ψd| ×d pd
k = −id×d < ψd|∂d/d∂dxdk, (2.28b)

and corresponding isodual Heisenberg equations (for a Hermitean observable A)

id ×d ddAd/dddtd = [A,H]d = −dHd ×d Ad +d Ad ×d Hd = −[A,H], (2.29a)

[pd
i , x

dj]d = −id ×d δdi
j , [xdi, xdj]d = [pd

i , p
d
j ]

d = 0. (2.29b)

The equivalence of the above operator formulation of antimatter with charge conjugation
has been proved in Refs. (16,21).

2.8: Isodual special relativity. The vast scientific literature on special relativity
throughout the 20-th century is silent on the fact that, classically, it can solely represent
matter, under the belief that classical antimatter can be represented via a mere change of
the sign of the charge without an inspection of the various consequential inconsistencies
identified earlier.

To resolve this impasse, R. M. Santilli proposed in Refs. [3] the isodual special relativity
which is based on the isodual topology (14), the isodual Minkowski space (15), the isodual
Poincaré symmetry (29) and the isodualities of relativistic dynamics and physical laws
(55). The explicit form of these structures can be easily constructed by the interested
reader via the isodual map (2.4).

We only note that that the change of the sign of elementary charges or, more ap-
propriately, charge conjugation, are anti-homomorphic maps, while isoduality is an anti-
isomorphic map. Therefore, according to special relativity antiparticles exist in the same
spacetime of particles, while, according to isodual special relativity, antiparticles exist in
the isodual spacetime which coexists with, yet it is independent from our spacetime.
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2.9: Origin of the isodual theory in Dirac’s equation. On historical grounds
it should be indicated that the isodual mathematics and related theory of antimatter
originated from an inspection of the celebrated Dirac equation (6). In fact, its basic unit
displays precisely the negative-definite unit for the antiparticle component, namely, the
isodual unit,

γo = i×
(

I2×2 02×2

02×2 −I2×2

)
= i×

(
I2×2 02×2

02×2 Id
2×2

)
(2.31)

Similarly, by recalling that Pauli’s matrices are Hermitean, the space components
of Dirac’s gamma matrices exhibit precisely the isodual Pauli’s matrices of antimatter
precisely for the antimatter component of the equation,

(γk) =

(
02×2 σ2×2

−σ2×2 02×2

)
=

(
02×2 −σd

2×2

−σ2×2 02×2

)
. (2.32)

It then follows that Dirac’s gamma matrices have the new symmetry of being isoselfdual
(Definition 2.2)

γµ = −γµ† = γµd, (2.33)

and, when interpreted via the isosual mathematics, Dirac’s equation directly describes the
Kronecker product of an electron and a positron

{γµ[pµ − 2× Aµ)x)/co] + i×m} × dφ(x) =

= [

(
0 −σkd

−σk 0

)
× (pk − e× Ak/co)−

−i×
(

I 0
0 Id

)
× (p4 − e× A4/co) + i×m]×

(
φ(x)
φd(x)

)
= 0. (2.34)

Finally, the true invariance of Dirac’s equation is not that under the Poincaré symmetry
alone, as popularly believed until now, but rather under the Poincaré symmetry and its
isodual

STot = P (3.1)× P d(3.1). (2.35)

Note the elimination of the controversial ”hole theory” and second quantization, since
the isodual theory of antimatter holds at the classical level,, let alone that in first quantiza-
tion, without excluding, of course, its applicability to second quantization. In particular,
as indicated earlier, negative-energy solutions of Dirac’s equations mandated the ”hole
theory” because referred to positive units, thus being unphycical, while the negative-
energy solutions of Eq. (2.34) are referred in isodual mathematics to negative units, thus
being fully physical.

Note also the elimination of the additional controversy on the ”four-dimensional ir-
reducible representation of spin 1/2” because, under the proper interpretation, Dirac’s
gamma matrices solely characterize a two-dimensional representation of spin 1/2, as a
Kronecker product of one representation for matter and its isodual for antimatter. Note
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the need to eliminate second quantization to admit only two-dimensional irreducible rep-
resentations of spin 1/2, as mandated by Lie’s theory.

Regrettably, Dirac was unaware of the fact that a negative unit can indeed be the
correct unit of an appropriate mathematics and, as a consequence, he developed the ”hole
theory” restricting the treatment of antiparticles to the sole level of second quantization.
It is an easy prediction that, in the event the isodual numbers had been discovered prior
at the beginning of the 20-th century (rather than in 1985 (11)), Dirac would never have
proposed his ”hole theory.

2.10: Experimental verifications and applications. It is easy to see that the isodual
theory represents correctly all available classical experimental evidence on antimatter. For
instance, the Coulomb laws for matter with charge q and antimatter with charge qd at
mutual distance r are given by

FMatterObserver = q × qd/r2, FAntimatterObserver = qd ×d q/drd2, (2.30a)

FMatterObserver = q × q/r2, FAntimatterObserver = qd ×d qd/drd2, (2.30b)

and they correctly represent mutual attraction (mutual repulsion) for matter-antimatter,
(matter-matter and antimatter-antimatter) for both matter and antimatter observers,
where F is attractive when having negative value for a matter observer on R, as conven-
tional, and a positive value for an antimatter observer on Rd, the opposite occurring for
attraction. For additional details, interested reader can inspect Ref. (22).

The equivalence of the isoduality on Hilbert spaces with charge conjugation proved in
Refs. (16,21) establishes that the isodual theory of antimatter with available experimental
data at the operator level too.

Despite its simplicity, the physical, astrophysical and cosmological implications of
isodual mathematics are rather deep. To begin, the isodual map (2.4) implies the change
of the sign not only of the charge, but also of all other physical quantities of matter,
including mass, energy, time, etc. For instance, the energy eigenvalue E of Eqs. (2.9)
has negative values since it is positive in Eq. (2.9), yet computed on Rd. Note that the
measurement of physical quantities with respect to negative definite units resolves the
traditional inconsistencies for negative mass and energy.

In particular, the isodual theory of antimatter recovers the old hypothesis that an-
tiparticles move backward in time (since they have a negative-definite time) by resolving
the inherent violation of causality which lead to its abandonment in the second half of
the 20-th century. In fact, motion backward in time measured with respect to a negative
unit of time is as causal as the conventional motion forward in time referred to a positive
unit of time.

Most importantly, the isodual theory of antimatter mandates the existence of antigrav-
ity defined as a gravitational repulsion experienced by antimatter in the field of matter and
vice-versa (16,21,22), while resolving the historical objections against antigravity. As an
illustration, the creation of an electron-positron pair is represented by an isoselfdual state
onH×Hd over C×Cd, whose eigenvalues can only be defined over the field of the observer
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(that is, R for a matte observer and Rd for an antimatter observer), as studied in detail in
Refs. (21,60). Such an occurrence prevents configurations of correlated electron-positron
systems which, for the case of antigravity without the isodual mathematics, could violate
the principle of conservation of the energy (e.g., by obtained blueshifts without applied
force). Other objections against antigravity for antimatter-matter systems are resolved
in similar ways.

J. P. Mills has shown in Ref. (160) that the experimental verification of antigravity
proposed in Ref. (17) can be conducted in a resolutory form with available technology.
The proposed experiment essentially consists of a horizontal vacuum tube of about one
meter in diameter and ten meters in length with internal collimators at one end and
a scintillator at the other end. The release of photons through the collimators would
establish on the scintillator the point of no gravity; the release of electrons would show
at the scintillator a downward shift due to gravity ; and the release of positrons would
show an upward or downward shift on the scintillator depending on whether they are
experiencing antigravity or gravity, respectively. The experiment would be resolutory
because, when the electrons and positrons have very small energy (of the order of electron
Volts), the downward or upward shift of their impact on the scintillator would be visible
to the naked eye. This low energy experiment has been ignored by experimentalists in
favor of other high energy experiments due to the inconsistencies of the prediction of
antigravity when treated with conventional mathematics. It is hoped that, in view of the
resolution of these inconsistencies thanks to isodual mathematics, experimentalists will
reconsider their view and conduct indeed such a fundamental experiment.

Above all, isodual mathematics has fulfilled the primary scope for which it was con-
structed, the initiation of quantitative classical studies as to whether far away galaxies and
quasars are made-up of matter or of antimatter. In fact, isodual mathematics predicts
that antimatter emits a new photon, called the isodual ;photon (21), which has experi-
mentally detectable characteristics different than those of the ordinary photon emitted by
matter, e.g., the isodual photon is repelled by the gravitational field of our Earth, and
has a parity different than that of the ordinary photon. The experimental resolution on
Earth whether light from a far away galaxy or quasar is made up of photons or of isodual
photons would then resolve the open cosmological problem whether the universe is only
made up of matter, or antimatter galaxies and quasars are equally present.

An important application of the isodual theory of antimatter has been developed by
J. Dunning Davies (161) who has constructed the first (and only) known thermodynamics
for antimatter stars. In this way, quantitative cosmological studies on the antimatter
component of the universe are already under way.

3. CONSTRUCTION OF ISOMECHANICS FROM NONLO-
CAL, NONLINEAR AND NONPOTENTIAL INTERACTIONS

3.1: The scientific unbalance caused by nonlocal interactions. Another large
scientific unbalance of the 20-th century has been the adaptation of nonlocal-integral sys-
tems to the pre-existing mathematics which is notoriously local-differential.This approach

14



has created serious limitations and controversies which have remained unsolved despite
attempts conducted over three quarter of a century, such as:

(1) the lack of numerically exact representations of chemical valence bonds in molecular
structures;

(2) the historical inability to achieve an exact representation of nuclear magnetic
moments;

(3) the absence of an exact representation of the Bose-Einstein correlation without ad
hoc free parameters to fit data; and other unresolved problems.

In all these cases we have the mutual overlapping/penetration of particles and/or
their wavepackets at distances of the order of 10−13cm, which conditions are strictly
nonlocal-integral and, as such, they are beyond the exact applicability of the mathematical
structure, let alone physical laws of quantum mechanics.

It is appropriate here to recall that quantum mechanics and its underlying mathematics
permitted a numerically exact representation of all experimental data of the Hydrogen
atom. By contrast, the same mathematics and quantum laws have not permitted an
equally exact representation of the experimental data of the Hydrogen molecule, since a
historical 2% of molecular binding energy has been missed for about one century under the
rigorous applicability of quantum axioms (thus excluding screenings of the Coulomb law
which imply noncanonical/nonunitary transforms, thus exiting the class of equivalence of
the original theory).

Since the sole difference between one isolated Hydrogen atom and two atoms coupled
into the Hydrogen molecule is given by the electron valence bonds, the above occurrence
illustrates the exact validity of quantum mechanics and related mathematics when the
systems can be effectively appropriate as point particles at sufficiently large mutual dis-
tances (as it is the case for the structure of the Hydrogen atom), while the same theory and
related mathematics have a merely approximate character when systems contain interac-
tions at short distances (as it is the case for the mutual overlapping of the wavepackets
of valence electrons with antiparallel spins).

The insufficiency is due to the fact that conventional mathematics is local-differential
in its structure, thus solely permitting the representation of valence bonds as occurring
between point particles interacting at a distance. This representation is evidently valid
in first approximation because electrons have indeed a point charge. Nevertheless, such
a local-differential representation is insufficient because of the lack of treatment of the
mutual penetration of the electron wavepackets which cannot be consistently reduced to
a finite set of isolated points.

It is then evident that a more adequate treatment of valence bonds in chemistry, as
well as all nonlocal-integral interactions in general, requires a new mathematics which
is partly local-differential (to represent conventional Coulomb interactions) and partly
nonlocal-integral (to represent the overlapping of the wavepackets). Additional physi-
cal requirements establish that the needed mathematics must be nonlinear in the wave-
function, thus preventing the use of conventional quantum mechanics because nonlinear
Schroedinger’s equations violate the superposition principle with consequential inapplica-
bility to composite systems (45,46).
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Figure 2: An illustration of the second scientific unbalance of the 20-th century, the lack of
adequate mathematics for quantitative studies of nonlocal-integral interactions occurring the
in deep overlappings of the wavepackets of electron valence bonds in molecules, as well as, in
general, all interactions of particles ar short distances.

It should be indicated that numerous ”nonlocal interactions” exist in the physical
literature, but they have generally been adapted to be representable with a local potential
in a Hamiltonian (for theoretical and experimental studies on this type of nonlocality
nonlocality, see, e.g., C. A. C. Dreismann (220-223) and references quoted therein).

The interactions occurring in valence bonds are dramatically more general than the
above inasmuch as they occur in the finite volume of wave overlappings which is not re-
ducible to a finite number of isolated points and they are of nonpotential type because
of contact, zero-range nature, thus prohibiting a consistent representation with a Hamil-
tonian, let alone a potential. More specifically, the granting of a potential energy to the
deep wave-overlappings of valence bonds would be the same as granting potential energy
to the resistive force experienced by an extended object moving within a medium.

All in all, one century of failed attempt to achieve an exact representation of molecu-
lar data establish beyond credible doubts that the nonlocal, nonlinear and nonpotential
interactions occurring in valence bonds are beyond the axiomatic structure of quantum
mechanics, thus demanding nonunitary theories as a necessary condition to exit from the
class of unitary equivalence of quantum mechanics.

3.2: Catastrophic inconsistencies of noncanonical-nonunitary theories. Recall
that a crucial feature of quantum mechanics, which permitted its dominance in physical
applications, is the invariance, namely, the preservation of numerical values, physical laws
and mathematical axioms under the time evolution of the theory. Since all quantum time
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evolutions are expressible via a Hermitean Hamiltonian, the above feature is essentially
expressed by the invariance of the mathematical structure of quantum mechanics under
unitary transforms.

In fact, quantum theories are expressible via a Hermitean Hamiltonian H = p2/2m +
V = H† defined on a Hilbert space H over the field of complex number C with a unitary
time evolution

U(t)× |ψ(to) >= |ψ(t) >,U × U † = U † × U = I, U(t) = ei×H×t, (3.1)

which, as such, leaves invariant all basic units by definition,

I → I ′ = U × I × U † = I, (3.2)

the conventional associative product A × B between two arbitrary quantities A and B
(numbers, matrices, operators, etc.)

A×B → U × (A×B)× U † = (U × A× U †)× (U ×B × U †) = A′ ×B′, (3.3)

and all numerical predictions. To illustrate this important property, suppose that a given
quantum model; predicts the energy of 5 eV according to the familiar equation

H(to)× |ψ(to) >= 5eV × |ψ(to) > . (3.4)

Then the value 5 eV is preserved at all subsequent times in view of the unitary invariance

U(t)×H(to)× |ψ(to) >= (U ×H × U †)× (U × U †)−1 × (U × |ψ >) =

= H(t)× |ψ(t) >= U(t)× (5eV × |ψ(to) >) = 5eV × |ψ(t) > . (3.5)

The invariance of physical laws and mathematical axioms then follows.
It is evident that no representation of, the interactions occurring the valence bonds,

and other mutual penetrations of particles at short distances, is physically acceptable
unless it achieves the same invariance enjoyed by quantum mechanics. But the inter-
actions herein considered are assumed to be non-Hamiltonian, thus beingnonunitary by
conception. The difficulties of the task at hand can then be expressed by the following

THEOREM 3.1 (45,46): All formulations with classical noncanonical and operator
nonunitary time evolutions do not have time-invariant numerical predictions, physical
laws and mathematical axioms when formulated via the mathematics of classical and
quantum Hamiltonian mechanics, thus having no known physical or mathematical value.

To illustrate the above theorem, note that, by assumption, the time evolution needed to
represent nonlocal, nonpotential and nonlinear valence bonds has the nonunitary structure

W (t)× |φ(to) >= |ψ(t) >,W ×W † 6= I, W (t) 6= ei×H×t. (3.6)
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It is then easy to see that, when the nonunitary theory is formulated via the mathematics
of unitary theories, it does not admit time-invariant numerical predictions, thus having
no known physical meaning or value (46).

To illustrate this important occurrence, note that nonunitary time evolutions do not
preserve the basic units by conception,

I → I ′ = W × I ×W † 6= I, (3.7)

where one should keep in mind that a realization of I is given by the basic units of the
Euclidean space I = Diag.(1cm, 1cm, 1cm) expressed in the usual dimensionless form
I = diag.(1, 1, 1)..

Similarly, nonunitarity transforms do not preserve the conventional associative prod-
uct,

A×B → W × (A×B)×W † = (W × A×W †)× (W ×W †)−1 × (W ×B ×W †) =

= A′ × (W ×W †)−1 ×B′ 6= A′ ×B′. (3.8)

It is then easy to verify the lack of invariance of numerical, predictions. In fact,
suppose that the given nonunitary theory also predicts the energy of 5 eV at the initial
time,

H(to)× |ψ(to) >= 5eV × |ψ(to) >, (3.9)

and that 15 seconds later
(W ×W †)t=15sec = 1/3. (3.10)

We then have

W ×H(to)× |ψ(to) >= (W ×H ×W †)× (W ×W †)−1 × (W × |ψ >) =

= W (t)× (5eV × |ψ(to) >), (3.11)

namely,
H(t)× |ψ(t) >= (W ×W †)× (5eV |ψ(t) >) = 15eV × |ψ(t) > . (3.12)

The lack of preservation in time of numerical predictions then implies consequences today
known as ”catastrophic physical inconsistencies,” such as: the lack of applicability of the
theory to measurements (because of the loss of invariant basic units); Lopez’s Lemma
(172,173) (loss of Hermiticity in time with consequential lack of acceptable observables);
violation of causality and probability laws; etc. (45,46,171-175).

The use of conventional mathematics for broader nonunitary theories leads to equally
serious mathematical problems today known as ”catastrophic mathematical inconsisten-
cies.” Suppose that a nonunitary theories is formulated at a given initial time to on
a metric space defined over the field of real numbers R with basic unit I. But, by
their very definition, nonunitary time evolutions do not leave invariant the basic unit,
I → I ′ = U × I × U † 6= I. Therefore, nonunitary time evolutions do not admit the
original basic unit I at all times t > to, with consequential loss of the base field R. In turn,
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the loss of the base field implies the inability to properly define the metric space acting on
it, with consequential catastrophic collapse of the entire mathematical structure. Classi-
cal noncanonical theories are afflicted by similar catastrophic mathematical and physical
inconsistencies (45,46,171-175).

It should be recalled that, when facing non-Hamiltonian systems, a rather general
tendency is that of transforming such systems into a form which is (at least locally)
Hamiltonian via the use of Darboux’s theorem of the symplectic geometry or the Lie-
Koening theorem of analytic mechanics (51). Unfortunately, these transformations cannot
be used for the study of valence bonds because:

(i) the system considered are nonlocal (thus implying the inapplicability a priori of
the topologies needed for the quoted theorems);

(ii) Darboux’s transformations are nonlinear, thus implying the impossibility of placing
measuring apparata in the new Darboux’s coordinates; and

(iii) in view of their nonlinearity, Darboux’s transformations cause the loss of the
inertial character of reference frames with consequential loss of Galileo’s and Einstein’s
relativities.

In view of these shortcomings, the only physically acceptable representations are those
occurring in the fixed coordinates of the observer, called direct representations (51). Only
after such a representation is consistently achieved the transformation theory may have
value.

In summary, the representation of chemical bonds as well as other nonlocal interactions
at short distances requires the abandonment of Hamiltonian theories which, in turn,
implies the necessary use of theories whose time evolution is noncanonical at the classical
level and nonunitary at the operator level. Still in turn, such noncanonical/nonunitary
theories require the necessary construction of a new mathematics capable of resolving the
catastrophic inconsistencies reviewed above.

3.3: Elements of isomathematics. The new mathematics specifically constructed
for quantitative invariant treatment of nonlocal, nonpotential and nonlinear interactions
among extended particles under mutual penetration at short distance is today known
under the name of isomathematics, (where the prefix ”iso” also denotes the preserva-
tion of conventional axioms). Isomathematics was first proposed by R. M. Santilli in
Ref. (23) of 1978 and subsequently studied by several mathematicians, theoreticians and
experimentalists (see Refs. [2,4-11]).

The main idea is that, as indicated earlier, valence bonds include conventional local-
differential Coulomb interactions, plus nonlocal, nonlinear and nonpotential interactions
due to wave-overlappings. The former interactions can be effectively represented with the
conventional Hamiltonian, while the latter interactions can be represented via a general-
ization of the basic unit as a condition to achieve invariance (since the unit is the basic
invariant of any theory).

Therefore, the main assumption of isomathematics is the lifting of the conventional
unit of current formulations, generally given by an N-dimensional unit matrix I = Diag.(1,
1, ..., 1) > 0, into a quantity Î, called isounit, which possesses all topological properties
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of I (such a positive-definiteness, same dimensionality, etc.), while having an arbitrary
functional dependence on coordinates x, velocities v, wavefunctions ψ, their derivatives
∂xψ, and any other needed variable (23,51),

I = Diag.(1, 1, ..., 1) > 0 → Î(x, v, ψ, ∂xψ, ...) = 1/T̂ (x, v, ψ, ∂xψ, ...) > 0. (3.13)

The conventional associative and distributive product A×B among generic quantities A,
B (such as numbers, vector fields, operators, etc.) is jointly lifted into the more general
form

A×B → A×̂B = A× T̂ ×B, (3.14)

which remains associative and distributive, thus being called isoproduct, under which the
left and right character of I is preserved, i.e.,

I × A = A× I = A → Î×̂A = A×̂Î = A, (3.15).

for all elements A of the set considered.
An example of isounits (hereon assumed to be multiplicative) representing the inter-

actions due to wave-overlappings of valence bonds is given by

Î = eN(ψ)×
∫

dx×ψ†(x)×ψ(x), (3.16)

and illustrates the desired representation of nonlocal, nonlinear and nonpotential interac-
tions.

Another example of isounits is given by

Î = Diag.(n2
1, n

2
2, n

2
3), (3.17)

and illustrates the representation of the actual, extended, generally nonspherical and
deformable shape of the particle considered, in this case, a spheroidal ellipsoid.

The following is another example of isounit representing a relativistic system of ex-
tended, nonspherical and deformable particles under nonlinear, nonlocal and nonpotential
interactions

ÎTot = Πk=1,2,...,nDiag.(n2
k1, n

2
k2, n

2
k3, n

2
k4)× Γ(x, v, ψ, ∂ψ, (3.18)...),

where Γ is a function characterized by the considered nonlinear, nonlocal and nonpotential
interactions, and nk4 represents the density of the medium in the interior of the particle
k with the value nk4 = 1 for the vacuum, or, equivalently, the local speed of light within
physical media c = co/nk4, in which case nk4 is the familiar index of refraction and co is
the speed of light in vacuum.

Numerous additional examples of isounits exist in the literature [4-11]. Note that the
features represented by the isounits are strictly outside any representational capability by
the Hamiltonian.
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DEFINITION 3.1: Let F = F (a, +,×) be a field as per Definition 2.1. The isofields,
first introduced in Ref. (23) of 1978 (see Ref. (12) for a mathematical treatment) are
rings F̂ = F̂ (â, +̂, ×̂) whose elements are the isonumbers

â = a× Î , (3.19)

with associative, distributive and commutative isosum

â+̂b̂ = (a + b)× Î = ĉ ∈ F̂ , (3.20)

associative and distributive isoproduct

â×̂b̂ = â× T̂ × b̂ = ĉ ∈ F̂ , (3.21)

additive isounit
0̂ = 0, â+̂0̂ = 0̂+̂â = â, (3.22)

andmultiplicative isounit

Î = 1/T̂ > 0, â×̂Î = Î×̂â = â,∀â, b̂ ∈ F̂ , (3.23)

where Î is not necessarily an element of F. Isofields are called of the first (second) kind
when Î = 1/T̂ > 0 is (is not) an element of F.

LEMMA 3.1: Isofields of first and second kind are fields (namely, isofields verify all
axioms of a field with characteristic zero).

The above property establishes the fact (first identified in Ref. (12) that, by no means,
the axioms of a field require that the multiplicative unit be the trivial unit +1, because it
can be a negative-definite quantity as for the isodual mathematics, as well as an arbitrary
positive-definite quantity, such as a matrix or an integrodifferential operator.

Needless to say, the liftings of the unit and of the product imply a corresponding lifting
of all conventional operations of a field. In fact, we have the isopowers

ân̂ = â×̂â×̂..., ×̂â(ntimes) = an × Î , (3.24)

with particular case
Î n̂ = Î; (3.25)

the isosquare root

â
ˆ1/2 = a1/2 × Î1/2; (3.26)

the isoquotient
â/̂b̂ = (â/b̂)× Î = (a/b)× Î; (3.27)

the isonorm
|̂â̂| = |a| × Î , (3.28)

21



where |a| is the conventional norm; etc.
Despite their simplicity, the above liftings imply a complete generalization of the

conventional number theory particularly for the case of the first kind (in which Î ∈ F )
with implications for all aspects of the theory. As an illustration, the use of the isounit
Î = 1/3 implies that ”2 multiplied by 3” = 18, while 4 becomes a prime number.

An important contribution has been made by E. Trell (143) who has achieved a proof
of Fermat’s Last Theorem via the use of isonumbers, thus achieving a proof which is
sufficiently simple to be of Fermat’s time. A comprehensive study of Santilli’s isonumber
theory of both first and second kind has been conducted by C.-X. Jiang in monograph (68)
with numerous novel; developments and applications. Additional studies on isonumbers
have been done by N. Kamiya et al. (156) and others (see mathematical papers (10) and
proceedings (8)).

The lifting of fields into isofields implies a corresponding lifting of functional analysis
into a form known as isofunctional analysis studied by J. V. Kadeisvili (132-133), A. K.
Aringazin et al. (144) and other authors. A review of isofunctional analysis up to 1995
with various developments has been provided by R. M. Santilli in monographs (54,55).
We here merely recall the isofunctions

f̂(x̂) = f(x× I)× Î; (3.29)

the isologarithm
ˆlogêa = Î × logea, ˆlogêê = Î , ˆlogêÎ = 0; (3.30)

the isoexponentiation,

êÂ = Î+̂Â/̂1̂!+̂Â×̂Â/̂2̂!+̂... = (eÂ×T̂ )× Î = Î × (eT̂×Â). (3.31)

The conventional differential calculus must also be lifted, for consistency, into the
isodifferential calculus first identified by R. M. Santilli in memoir (14) of 1996, with
isodifferential

d̂x̂ = T̂ × dx̂ = T̂ × d(x× Î), (3.32)

which, for the case when Î does not depend on x, reduces to

d̂x̂ = dx; (3.33)

the isoderivatives
∂̂f̂(x̂)/∂̂x̂ = Î × [∂f(x̂)/∂x̂], (3.34)

and other similar properties. The indicated invariance of the differential under isotopy,
d̂x̂ = dx, illustrates the reason why the isodifferential calculus has remained undetected
since Newton’s and Leibnitz’s times.

3.4: Isotopologies, isospaces and isogeometries. Particularly important for these
notes is the isotopy of the Euclidean topology independently identified by G. T. Tsagas
and D. S. Sourlas (139) and R. M. Santilli (14), as well as the isotopies of the Euclidean,
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Minkowskian, Riemannian and symplectic geometries, first identified by Santilli in various
works (see Refs. (14,15,29,54,55) and references quoted therein). We cannot possibly
review here these advances for brevity.

We merely mention that any given n-dimensional metric or pseudometric space S(x,m, R)
with basic unit I = Diag.(1, 1, ..., 1), local coordinates x = (xi), i = 1, 2, .., n, n × n-
dimensional metric m and invariant x2 = xi × mij × xj ∈ R is lifted into the isospaces

Ŝ(x̂, m̂, R̂) with isocoordinates, isometric and isoinvariant respectively given by

I = Diag.(1, 1, ..., 1) → În×n(x, v, ...) = 1/T̂ (x, v, ...), (3.35a)

x → x̂ = x× Î , m → m̂ = T̂ (x, v, ...) m, (3.35b)

x2 = xi ×mij × xj × I ∈ R → x̂2̂ = x̂i×̂m̂ij×̂x̂j × Î =

= {xi × [T̂ (x, v, ...)×m]× xj} × Î ∈ R̂. (3.35c)

where one should note that m̂ is an isomatrix, namely, a matrix whose elements are
isonumbers (thus being multiplied by Î to be in R̂) and all operation are isotopic (in this
way the calculation of the value of an isodeterminant cancels out all multiplications by Î
except the last, thus correctly producing an isonumber).

An inspection of the functional dependence of the isometric m̂ = T̂ (x, v, ...)×m then
reveals that isospaces Ŝ(x̂, m̂R̂) unify all possible spaces with the same dimension and
signature. As an illustration, the isotopy of the 3-dimensional Euyccldiean space includes
as particular case the 3-dimensional Riemannian, Finslerian as well as any other space
with the same dimension and signature (+, +, +) (in view of the positive-definiteness of
Î. Broader unifications are possible in the event such positive-definiteness is relaxed.

Since the isotopies preserve the original axioms, the unification of the Euclidean and
Riemannian geometry implies the reduction of Riemannian geometry to Euclidean ax-
ioms on isospaces over isofields. In turn, such a geometric unification has far reaching
implications, e.g., for relativities, grand unifications and cosmologies (see later on).

It should be mentioned that ”deformations” of conventional geometries are rather fash-
ionable these days in the physical and mathematical literature. However, these deforma-
tions are generally afflicted by the catastrophic inconsistencies of Theorem 3.1 because,
when the original geometry is canonical, the deformed geometry is noncanonical, thus
losing the invariance needed for consistent applications. The isotopies of conventional
geometries were constructed precisely to avoid such inconsistencies by reconstructing in-
variance on isospaces over isofield while having a fully noncanonical structure, as shown
below.

Therefore, for ”deformations” the generalized metric m̂ = T̂ ×m and related invariant
are referred to conventional units and fields R, while for ”isotopies” the same generalized
metric m̂ = T̂ ×m is referred to a isounit which is the inverse of the deformation of the
metric, Î = T̂−1. While the deformed geometry verify axioms different then the original
ones, the lifting of the original metric m by the matrix T̂ while the basic unit is lifted
by the inverse amount implies the preservation of the original axioms, with consequential
unifications of different geometries.
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Particularly intriguing are the isotopies of the symplectic geometry, known as isosym-
plectic geometry (14) which are based on the following fundamental isosymplectic two-
isoform

d̂p̂∧̂d̂r̂ = ω̂ = dp ∧ dr = ω, (3.36)

due to the fact that, for certain geometric reasons, the isounit of the variable p in the
cotangent bundle (phase space) is the inverse that of x (i.e., when Î = 1/T̂ is the isounit
for x, that for p is T̂ = 1/Î). The invariance ω̂ = ω provide a reason why the isotopies
of the symplectic geometry have escaped identification by mathematicians for over one
century.

Despite their simplicity, the isotopies of the symplectic geometry have vast impli-
cations, e.g., a broader quantization leading to a structural generalization of quantum
mechanics known as hadronic mechanics, as outlined below.

3.5: Lie-Santilli isotheory and its isodual. As well known, Lie’s theory (4) is based
on the conventional (left and right) unit I = Diag.(1, 1, ..., 1) of the universal enveloping
associative algebra. The lifting I → Î(x, ...) implies the lifting of the entire Lie theory,
first proposed by R. M. Santilli in Ref. (23) of 1978 and then studied in numerous works
(see, e.g., memoir (14) and monographs (51,54,55)). The isotopies of Lie’s theory are
today known as the Lie-Santilli isotheory following studies by numerous mathematicians
and physicists (see the monographs by D. S. Sourlas and Gr. Tsagas (64), J. V. Kadeisvili
(66), R. M. Falcon Ganfornina and J. Nunez Valdez (67), proceedings [8] and contributions
quoted therein).

Let ξ(L) be the universal enveloping associative algebra of an N-dimensional Lie al-
gebra L with (Hermitean) generators X = (Xi), i = 1, 2, ..., n, and corresponding Lie
transformation group G over the reals R. The Lie-Santilli isotheory is characterized by:

(I) The universal enveloping isoassociative algebra ξ̂ with infinite-dimensional basis
characterizing the Poincaré-Birkhoff-Witt-Santilli isotheorem

ξ̂ : Î , X̂i, X̂i×̂X̂j, X̂i×̂X̂j×̂X̂k, ..., i ≤ j ≤ k; (3.37)

where the ”hat” on the generators denotes their formulation on isospaces over isofields;
(II) The Lie-Santilli isoalgebras

L̂ ≈ (ξ̂)− : [X̂î,X̂j] = X̂i×̂X̂j − X̂j×̂X̂i = Ĉk
ij×̂X̂k; (3.38)

(III) The Lie-Santilli isotransformation groups

Ĝ : Â(ŵ) = (êî×̂X̂×̂ŵ)×̂Â(0̂)×̂(ê−î×̂ŵ×̂X̂) = (ei×X̂×T̂×w)× A(0)× (e−i×w×T̂×X̂), (3.39)

where ŵ ∈ R̂ are the isoparameters; the isorepresentation theory; etc.
The non-triviality of the above liftings is expressed by the appearance of the isotopic

element T̂ (x, ...) at all levels (I), (II) and (III) of the isotheory. The arbitrary functional
dependence of T̂ (x, ...) then implies the achievement of the desired main features of the
isotheory which can be expressed by the following:
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LEMMA 3.2 (14): Lie-Santilli isoalgebras on conventional spaces over conventional
fields are generally nonlocal, nonlinear and noncanonical, but they verify locality, linearity
and canonicity when formulated on isospaces over isofields.

To illustrate the Lie-Santilli isotheory in the operator case, consider the eigenvalue
equation on H over C, H(x, p, ψ, ...) × |ψ >= E × |ψ >. This equation is nonlinear in
the wavefunction, thus violating the superposition principle and preventing the study of
composite nonlinear systems, as indicated earlier. However, under the factorization

H(x, p, ψ, ...) = H ′(x, p)× T̂ (x, p, ψ, ...), (3.40)

the above equation can be reformulated identically in the isotopic form

H(x, p, ψ, ...)× |ψ >= H ′(x, p)× T̂ (x, p, ψ, ...)× |ψ >= H ′×̂|ψ >= E × |ψ >= Ê×̂|ψ >,
(3.41)

whose reconstruction of linearity on isospaces over isofields (called isolinearity (14)) is
evident and so is the verification of the isosuperposition principle with resulting applica-
bility of isolinear theories for the study of composite nonlinear systems. Similar results
occur for the reconstruction on isospace over isofields of locality (called isolocality) and
canonicity (called isocanonicity).

A main role of the isotheory is then expressed by the following property:

LEMMA 3.3 (29): Under the condition that Î is positive-definite, isotopic algebras
and groups are locally isomorphic to the conventional algebras and groups, respectively.

Stated in different terms, the Lie-Santilli isotheory was not constructed to characterize
new Lie algebras, because all Lie algebras over a field of characteristic zero are known. On
the contrary, the Lie-Santilli isotheory has been built to characterize new realizations of
known Lie algebras generally of nonlinear, nonlocal and noncanonical character as needed
for a deeper representation of valence bonds or, more generally, systems with nonlinear,
nonlocal and noncanonical interactions.

The mathematical implications of the Lie-Santilli isotheory are significant. For in-
stance, Gr. Tsagas (142) has shown that all simple non-exceptional Lie algebras of di-
mension N can be unified into one single Lie-Santilli isotope of the same dimension, while
studies for the inclusion of exceptional algebras in this grand unification of Lie theory are
under way In fact, the characterization of different simple Lie algebras, including the
transition from compact to noncompact Lie algebras, can be characterized by different
realizations of the isounit while using a unique form of generators and of structure con-
stants (see the first examples for the SO(3) algebra in Ref. (23) of 1978 and numerous
others in the quoted literature).

The physical implications of the Lie-Santilli isotheory are equally significant. We
here mention the reconstruction as exact at the isotopic level of Lie symmetries when
believed to be broken under conventional treatment. In fact, R. M. Santilli has proved:
the exact reconstruction of the rotational symmetry for all ellipsoidical deformations of
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the sphere (12); the exact SU(2)-isospin symmetry under electromagnetic interactions
(28,33); the exact Lorentz symmetry under all (sufficiently smooth) signature-preserving
deformations of the Minkowski metric (26); and the exact reconstruction of parity under
weak interactions (55). R. Mignani (180) has studied the exact reconstruction of the SU(3)
symmetry under various symmetry-breaking terms. In all these cases the reconstruction
of the exact symmetry has been achieved by merely embedding all symmetry breaking
terms in the isounit.

The construction of the isodual Lie-Santilli isotheory for antimatter is an instructive
exercise for interested readers.

The main physical theories characterized by isomathematics are given by:

3.6: Iso-Newtonian Mechanics and its isodual. As it is well known, Newton (1)
had to construct the differential calculus as a necessary pre-requisite for the formulation
of his celebrated equations. Today we know that Newton’s equations can only represent
point-particles due to the strictly local-differential character of the underlying Euclidean
topology. The fundamental character of Newtonian Mechanics for all scientific inquiries is
due to the preservation at all subsequent levels of study (such as Hamiltonian mechanics,
quantum mechanics, quantum chemistry, quantum field theory, etc.) of:

1) The underlying Euclidean topology;
2) The differential calculus; and
3) The notion of point particle.
By keeping in mind Newton’s teaching, the author has dedicated primary efforts to

the isotopic lifting of the conventional differential calculus, topology and geometries (14)
as a necessary pre-requisite for a structural generalization of Newton’s equations into
a form representing extended, nonspherical and deformable particles under action-at-a-
distance/potential as well as contact/nonpotential forces.

The need for such a lifting is due to the fact that point particles cannot experience
contact-resistive forces. This feature has lead to subsequent theories, such as Hamiltonian
and quantum mechanics, which solely admit action-at-a-distance/potential forces among
point particles. Such a restriction is indeed valid for a number of systems, such as plane-
tary systems at the classical level and atomic systems at the operator level, because the
large distances among the constituents permit an effective point–like approximation of
particles.

However, when interactions occur at short distances, as in the case of electron valence
bonds (Figure 2) or the mutual penetration of the wavepackets of particles in general,
the point-like approximation is no longer sufficient and a representation of the actual,
extended, generally nonspherical and deformable shape of particles is a necessary pre-
requisite to admit contact nonpotential interactions.

By recalling the fundamental character of Newtonian mechanics for all of sciences, the
achievement of a consistent representation of the contact interactions of valence electron
bonds at the operator level requires the prior achievement of a consistent Newtonian
representation.

To outline the needed isotopies, let us recall that Newtonian mechanics is formulated
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on the Kronecker product Stot = St×Sx×Sv of the one dimensional space St representing
time t, the tree dimensional Euclidean space Sx of the coordinates x = (xk

α) (where
k = 1, 2, 3 are the Euclidean axes and α = 1, 2, ..., n represents the number of particles),
and the velocity space Sv, v = dx/dt.

It is generally assumed that all variables t, x, and v are defined on the same field of
real numbers R. However, the unit of time is the scalar I = 1, while the unit of the
Euclidean space is the matrix I = Diag.(1, 1, 1). Therefore, on rigorous grounds, the
representation space of Newtonian mechanics Stot = S1 × Sx × Sv must be defined on
the Kronecker product of the corresponding fields Rtot = Rt × Rx × Rv with total unit
ITot = 1×Diag.(1, 1, 1)x ×Diag.(1, 1, 1)v.

Newtonian systems requested for the isotopies are given by the so-called closed-isolated
non-Hamiltonian systems (51), namely, systems which are closed-isolated from the rest
of the universe, thus verifying all ten Galilean total conservation laws, yet they admit
internal non-Hamiltonian forces due to contact interactions.

A typical illustration is given by the structure of Jupiter which, when considered as
isolated from the rest of the universe, does indeed verify all Galilean conservation laws,
yet its internal structure is clearly non-Hamiltonian due to vortices with varying angular
momentum and similar internal dissipative effects. In essence, contact nonpotential forces
produce internal exchanges of energy, linear and angular momentum but always in such
a manner to verify total conservation laws.

A Newtonian representation of closed-isolated non-Hamiltonian systems of extended
particles is given by(Ref. (51), page 236)

mα × akα = mα × dvkα

dt
= Fα(t, x, v) = F SA

α (x) + FNSA
α (t, x, v), (3.42a)

∑

α=1,...,n

FNSA
α = 0, (3.42b)

∑

α=1,...,n

xα

⊙
FNSA

α = 0, (3.42c)

∑

α=1,...,n

xα

∧
FNSA

α = 0, (3.42d)

where: SA (NSA) stands for variational selfadjointness (variational nonselfadjointness),
namely, the verification (violation) of the integrability conditions for the existence of
a potential, and conditions (3.9b), (3.9c) and (3.9d) assure the verification of all ten
Galilean conservation laws (for the total energy, linear momentum, angular momentum,
and uniform motion of the center of mass). The restrictions to FNSA verifying the above
conditions is tacitly assumed hereon.

The isotopies of Newtonian mechanics, also called Newton-Santilli isomechanics (63-
68), requires the use of the isotime t̂ = t × Ît with isounit Ît = 1/T̂t and related isofield
R̂t, the isocoordinates x̂ = (x̂k

α) = x× Îx, with isounit Îx = 1/T̂x and related isofield R̂x,
and the isospeeds v̂ = (vkα) = v × Îv with isounit Îv = 1/T̂v and related isofield R̂v.
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IsoNewtonian Mechanics is then formulated on the Kronecker product of isospaces
ŜTot = Ŝt × Ŝx × Ŝv over the Kronecker product of isofields R̂t × R̂x × R̂v. The isospeed
is the given by

v̂ =
d̂x̂

d̂t̂
= Ît × d(x× Îx)

dt
= v × Ît × Îx + x× Ît × dÎx

dt
= v × Îv, (3.43a)

Îv = Ît × Îx × (1 + x× T̂x × dÎx

dt
. (3.43b)

The Newton-Santilli isoequation and its isodual, first proposed in memoir (14) of 1996
(where the isodifferential calculus was first achieved) can be written

m̂α×̂ d̂v̂kα

d̂t̂
= − ∂̂V̂ (x̂)

∂̂x̂k
α

. (3.44)

namely, the equations are conceived in such a way to formally coincide with the conven-
tional equations for selfadjoint forces, F SA = −∂V/∂x, while all nonpotential forces are
represented by the isounits or, equivalently, by the isodifferential calculus. Such a concep-
tion is the only one known which permits the representation of extended particles with
contact interactions which is invariant (thus avoiding the catastrophic inconsistencies of
Theorem 3.1) and achieves closure, namely, the verification of all ten Galilean conservation
laws.

An inspection of Eqs. (3.10) is sufficient to see that iso-Newtonian mechanics recon-
structs canonicity on isospace over isofields, thus avoiding Theorem 3.1. Note that this
would not be the case if nonselfadjoint forces appear in the right hand side of Eqs. (3.10)
as in Eqs. (3.9a).

The verification of all Galilean conservation laws is equally established by a visual
inspection of Eqs. (3.10) since their symmetry, the iso-Galilean symmetry with structure
(3.8), is the Galilean symmetry, only formulated on isospace over isofields (53). By recall-
ing that conservation laws are represented by the generators of the underlying symmetry,
conventional total conservation laws then follow from the fact that the generator of the
conventional Galilean symmetry and its isotopic lifting coincide.

When projected in the conventional Newtonian space STot, Eqs. (3.10) can be explic-
itly written

m̂×̂ d̂v̂

d̂t̂
= m× Ît × d(v × Îv)

dt
=

= m× a× Ît × Îv + m× v × Ît × dÎv

dt
= − ∂̂V̂ (x̂)

∂̂x̂
= −Îx × ∂V

∂x
, (3.46)

that is

m× a = −T̂t × T̂v × Îx × ∂V

∂x
−m× v × T̂v × dÎv

dt
, (3.47)

with necessary and sufficient conditions for the representation of all possible SA and NSA
forces

Ît × Îv × Îx = I, Îx = 1/T̂t × T̂x, (3.48a)
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m× v × T̂v × dÎv

dt
= FNSA(t, x, v), (3.48b)

which always admit a solution, since they constitute a system of 6n algebraic (rather than
differential) equations in the 6n + 1 unknowns given by Ît, and the diagonal Îx and Îv.

As an illustration, we have the following equations of motion of an extended particle
with the ellipsoidal shape experiencing a resistive force FNSA = −γ × v because moving
within a physical medium

m× a = −γ × v (3.49a)

Îv = Diag.(n2
1, n

2
2, n

2
3)× eγ×t/m. (3.49b)

Interested readers can then construct the representation of any desired NSA forces (see
also memoir (14) for other examples).

Note the natural appearance of the velocity dependence, as typical of resistive forces.
Note also that the representation of the extended character of particles occurs only in
isospace because, when Eqs. (3.10) are projected in the conventional Newtonian space,
all isounits cancel out and the point characterization of particles is recovered. Note
finally the direct universality of the Newton-Santilli isoequations, namely, their capability
of representing all infinitely possible Newton’s equations in the frame of the observer.

As indicated earlier, Eqs. (3.42) can only describe a system of particles. The con-
struction of the isodual Newton-Santilli isoequations for the treatment of a system of
antiparticles is left to the interested reader.

We finally indicate that the invariance of closed non-Hamiltonian systems (3.42) is
given by the Galilei-Santilli isosymmetry Ĝ(3.1) and their isoduals by Ĝd(3.1) (see Refs.
(52,53) for brevity).

3.7: Iso-Hamiltonian Mechanics and its isodual. Eqs. (3.10) admit the analytic
representation in terms of the following isoaction principle (14)

δ̂Â(t̂, x̂) = δ̂
∫̂

(p̂kα×̂pd̂x̂k
α)− Ĥ×̂td̂t̂ =

= δ
∫̂

[pkα × T̂x(t, x, p, ...)× d(xk
α × Îx)−H × T̂t(t, x, p, ...)d(t× Ît) = 0. (3.50)

Note the main result permitted by the isodifferential calculus, consisting in the reduction
of an action functional of arbitrary power in the linear momentum (arbitrary order) to
that of first power in p first order. Since the optimal control theory and the calculus of
variation depend on the first order character of the action functional, the above reduction
has important implications, such as the treatment of extended objects moving within
resistive media apparently for the first time via the optimal control theory, since a first
order conventional action is impossible for the systems considered..

Note that when the isounits are constant, isoaction the isoaction coincides with the
conventional action. This illustrates the apparent reason why the isotopies of the action
principle creeped in un-noticed for over one century.
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It is easy to prove that the above isoaction principle characterizes the Hamilton-Santilli
isoequations (14)

d̂x̂

d̂t̂
=

∂̂Ĥ

∂̂p̂
=

p̂

m̂
=

p̂

m̂
,
d̂p̂

d̂t̂
= − ∂̂Ĥ

∂̂x̂
= F̂ SA + F̂NSA, , (3.51a),

Ĥ =
∑

α=1,...,n

p̂kα×̂pp̂
k
α

2̂×̂m̂α

(3.51b)

Ît = 1, Îx = I + FNSA/F SA, Îp = T̂x, (3.51c)

where one should note the real-valued, symmetric and positive-definite character of all
isounits, and corresponding Hamilton-Jacobi-Santilli isoequations

∂̂Â
∂̂t̂

+ Ĥ = 0,
∂̂Â
∂̂x̂k

α

− p̂kα = 0. (3.52)

As it was the case for Eqs. (3.10), iso-Hamiltonian mechanics has been conceived
to coincide at the abstract level with the conventional formulation. Nevertheless, the
following main differences occur:

1) Hamiltonian mechanics can only represent point particles while its isotopic covering
can represent the actual, extended, nonspherical and deformable shape of particles via
the simply identification of isounits (3.11c);

2) Hamiltonian mechanics can only represent a rather restricted class of Newtonian
systems, those with potential forces, while its isotopic covering is directly universal for all
possible (sufficiently smooth) SA and NSA Newtonian systems;

3) All NSA forces are represented by the isounits or, equivalently, by the isodifferential
calculus, thus permitting their invariant description, since iso-Hamiltonian mechanics
clearly reconstructs canonicity on isospaces over isofields.

Iso-Hamiltonian mechanics as outline above can only described closed non-Hamiltonian
systems of particles. The construction of its isodual for antiparticles is an instructive ex-
ercise for interested readers.

3.8: Isotopic Branch of nonrelativistic Hadronic Mechanics and its isodual.
The preservation of the form of Newton’s and Hamilton’s equations has far reaching
implications, since it permit a simple lifting of quantization, resulting in a generalization
of quantum mechanics known under the name of isotopic branch of Hadronic Mechanics
(see memoir (31) for a general review), which permits, apparently for the first time, an
axiomatically consistent and invariant representation of extended particles under linear
and nonlinear, local and nonlocal, and potential as well as nonpotential interactions.

Recall that the conventional naive or symplectic quantization A → −i × h̄ × Lnψ is
solely applicable for first-order action functionals A(t, x) and, as such, it is not applicable
to the isoaction Â(t̂, x̂) = Â(t, x, p, ...) due to its higher order when formulated on con-
ventional spaces. Nevertheless, it is easy to show that the following naive isoquantization
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holds (for ˆ̄h replaced by Îx)

Â(t̂, x̂) → −î×̂T̂x×̂L̂nψ̂(t̂, x̂), (3.53)

which, when applied to Eqs. (3.12) permits the map here expressed for the case when Îx

is a constant (see Ref. (55) for the general case)

∂̂Â
∂̂t̂

+ Ĥ = 0 → −i× Ît × ∂ψ̂

∂t
+ Ĥ × T̂x × ψ̂ = 0, (3.54a)

∂̂Â
∂̂x̂k

α

− p̂kα = 0 → −i× Îx × ∂ψ̂

∂x
− p̂× T̂x × ψ̂ = 0. (3.54b)

The above equations can be more properly formulated over the iso-Hilbert space (25)
Ĥ with isostates |ψ̂(t̂, x̂) > and isoinner product < ψ̂|×̂|ψ̂ > ×Î over the isofield Ĉ (see
memoir (31) for a review). The new mechanics is characterized by the iso-Schroedinger
equations (first derived in Refs. (25,179) with ordinary mathematics and first formulated
via the isodifferential calculus in Ref. (14))

î×̂ ∂̂

∂̂t̂
|ψ̂ >= Ĥ×̂|ψ̂ >= Ĥ(x̂, p̂)× T̂ (x̂, p̂, ψ̂, ∂̂ψ̂, ....)×|ψ̂ >= Ê×̂|ψ̂ >= E×|ψ̂ >, (3.55a)

p̂k×̂|ψ̂ >= −î×̂∂̂k|ψ̂ >= −i× Î i
k × ∂i|ψ̂ >, Î×̂|ψ̂ >= |ψ̂ >, (3.55b)

and the iso-Heisenberg equations (first derived in Ref. (38) via conventional mathematics
and first formulated via the isodifferential calculus in Ref. (14))

î×̂ d̂Â

d̂t̂
= [Â,̂Ĥ] = Â×̂Ĥ−̂Ĥ×̂Â =

= Â× T̂ (t̂, x̂, p̂, ψ̂, ∂̂ψ̂, ...)× Ĥ − Ĥ × T̂ (t̂, x̂, p̂, ψ̂, ∂̂ψ̂, ...)× Â, (3.56a)

[x̂i ,̂p̂j] = î×̂δ̂i
j = i× δi

j × Î , [x̂i, x̂j] = [p̂i, p̂j] = 0. (3.56b)

A first important property the reader can easily prove is that iso-Hermiticity coin-
cides with conventional Hermiticity. Consequently, all quantities which are observable
for quantum mechanics remain observable under isotopies. In particular, it is equally
easy to prove that all Hermitean quantities which are conserved for quantum mechan-
ics remain conserve under isotopies, again, because the symmetries of Schroedinger’ and
iso-Schroedinger’s equations are isomorphic and their generators coincide.

The above results implies the existence of a new notion of bound state of particles as
the operator image of closed non-Hamiltonian systems (3.9), namely, a bound state ad-
mitting internal Hamiltonian as well as nonlinear, nonlocal and nonpotential interactions
while preserving conventional total conservation laws. Note that these are precisely the
characteristics needed for quantitative studies of electron valence bonds, as well as, more
generally, bound states of particles at shot mutual distances.
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Another important property of hadronic mechanics is that, in view of the lack of gen-
eral commutativity between Ĥ and T̂ , the iso-Schroedinger and iso-Heisenberg’s equations
have a nonunitary time evolution when formulated on conventional Hilbert spaces over
conventional fields,

|ψ̂(t) >= (ei×H×T̂×t)× |ψ̂(0) >= U(t)× |ψ̂(0) >,U × U † 6= I, (3.57)

However, all nonunitary transforms admit an identical reformulation as isounitary trans-
form on iso-Hilbert spaces,

U × U † 6= I, U = Û × T̂ 1/2, (3.58a)

Û×̂Û † = Û †×̂Û = Î . (3.58b)

The above property is a necessary condition to exit from the class of equivalence of
quantum mechanics, thus illustrating the nontriviality of the lifting.

Yet another property is that nonlinear Schroedinger’s equations cannot represent com-
posite systems because of the violation of the superposition principle, while hadronic me-
chanics resolves this limitation. In fact,, all nonlinear Schroedinger’ s equations can be
identically rewritten in the isotopic form with the embedding of all nonlinear terms in the
isotopic element,

H(x, p, ψ)|ψ >= H ′(x, p)× T̂ (x, p, ψ), ...)× |ψ >= E × |ψ >, (3.59)

under which linearity, and, therefore, the superposition principle, are trivially recon-
structed in isospace over isofields.

The isoexpectation values of an observable Â on Ĥ over Ĉ are given by

< ψ̂|×̂Â×̂|ψ̂ >

< ψ̂|×̂|ψ̂ >
× Î ∈ Ĉ. (3.60)

It is easy to prove that the isoexpectation values coincide with the isoeigenvalues, as in the
conventional case. In particular, the isoexpectation value of the isounit recovers Planck’s
unit

< ψ̂|×̂Î×̂|ψ̂ >

< ψ̂|×̂|ψ̂ >
= h̄ = 1. (3.61)

Note also the following invariance of Hilbert’s inner product under isotopy (for the
case when the isotopic element does not depend on the integration variable)

< ψ| × |ψ > ×I ≡< ψ| × T̂ × |ψ > ×Î , (3.62)

which invariance explains why the isotopies of Hilbert spaces remained un-discovered since
Hilbert’s time even though they have the important implication of causing a structural
generalization of the conventional formulation of quantum mechanics. Note that, despite
its simplicity, invariance (3.62) required the prior identification of new numbers, those
with arbitrary unit Î.
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The latter properties establish that the isotopic branch of hadronic mechanics coincides
with quantum mechanics at the abstract, realization-free level. This feature is important
to assure the axiomatic consistency of hadronic mechanics, as well as to clarify the fact
that hadronic mechanics is not a new theory, but merely a novel realization of the abstract
axioms of quantum mechanics.

The isodual isotopic branch of hadronic mechanics for the treatment of antimatter
is given by the image of the theory under map (2.4) and its outline is here omitted for
brevity.

For additional intriguing features of hadronic mechanics, interested readers can inspect
memoir (31) and monograph (55).

3.9: Invariance of isotopic theories. The invariance of the basic axioms and numerical
predictions pf isotopic theories under time as well as other transforms was first achieved
in Refs. (14,31). It can be proved on isospaces over isofields by reformulating any given,
nonunitary transform in the isounitary form,

W ×W † = Î , W = Ŵ × T̂ 1/2,W ×W † = Ŵ ×̂Ŵ † = Ŵ †×̂Ŵ = Î , (3.63)

and then showing that the basic isoaxioms are indeed invariant, i.e.,

Î → Î ′ = Ŵ ×̂Î×̂Ŵ † = Î , (3.64a)

Â×̂B̂ → Ŵ ×̂(Â×̂B̂)×̂Ŵ † =

= (Ŵ × T̂ ×A× T̂ × Ŵ †)× (T̂ × Ŵ †)−1 × T̂ × (Ŵ × T̂ )−1 × (Ŵ × T̂ × B̂ × T̂ × Ŵ †) =

= Â′ × (Ŵ † × T̂ × Ŵ )−1 × B̂′ = Â′ × T̂ × B̂′ = Â′×̂B̂′, etc. (3.64b)

The invariance is ensured by the numerically invariant values of the isounit Î and of the
isotopic element T̂ under nonunitary-isounitary transforms, namely,

Î → Î ′ = Î , T̂ → T̂ ′ = T̂ , ×̂ → ×̂′ = ×̂. (3.65)

The resolution of the catastrophic inconsistencies of Theorem 3.1 is then consequential.
The achievement of invariant for classical noncanonical formulations is equivalent to

the preceding nonunitary one and its explicit form is left to the interested reader for
brevity.

3.10: Simple construction of isotheories. A simple method has been identified in
Refs. (14,31) for the construction of the entire isomathematics and its physical applica-
tions. It consists in:

(i) representing all conventional interactions with a Hamiltonian H and all nonhamil-
tonian interactions and effects with the isounit Î;

(ii) identifying the latter interactions with a nonunitary transform

U × U † = Î 6= I; (3.66)
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and
(iii) subjecting the totality of conventional mathematical and physical quantities and

all their operations to said nonunitary transform,

I → Î = U × I × U † = 1/T̂ , a → â = U × a× U † = a× Î , (3.67a)

a× b → U × (a× b)× U † = (U × a× U †)× (U × U †)−1 × (U × b× U †) = â×̂b̂, (3.67b)

eA → U × eA × U † = Î × eT̂×Â = (eÂ×T̂ )× Î , (3.67c)

[Xi, Xj] → U × [XiXj]× U † = [X̂î,X̂j] = U × (Ck
oj ×Xk)× U † = Ĉk

ij×̂X̂k =

= Ck
ij × X̂k, (3.67d)

< ψ| × |ψ >→ U× < ψ| × |ψ > ×U † =

=< ψ| × U † × (U × U †)−1 × U × |ψ > ×(U × U †) =< ψ̂|×̂|ψ̂ > ×Î , (3.67e)

H × |ψ >→ U × (H × |ψ >) = (U ×H × U †)× (U × U †)−1 × (U × |ψ >) =

= Ĥ×̂|ψ̂ >, etc. (3.67f)

It should be indicated that not all Lie-Santilli isoalgebras can be constructed via
nonunitary transforms of conventional Lie algebras. As an illustration, the classification
of all possible isotopic ŜU(2) algebras exhibits eigenvalues different then the conventional
ones, while only conventional eigenvalues are admitted under nonunitary transforms (see
Refs. (28,33) for brevity).

3.11: Isorelativity and its isodual. Special relativity is generally presented by contem-
porary academia as providing a descriptions of all infinitely possible relativistic systems
existing in the universe. In Section 2 we have shown that special relativity cannot provide
a consistent classical description of point antiparticles moving in vacuum. The content of
this section establishes that special relativity cannot be exactly valid for extended particles
and antiparticles moving within physical media. In the next section we shall show that
special relativity cannot describe irreversible processes for both matter and antimatter.
Finally, in Section 5 we shall show that the complexity of biological systems is immensely
beyond the rather limited descriptive capacity of special relativity.

Particularly misleading is the widespread statement of the ”universal constancy of the
speed of light” because contrary to known experimental evidence that the speed of light
is a a local variable depending on the medium in which it propagates, with well known
expression c = co/n, where co is the speed of light in vacuum and n is the familiar index
of refraction possessing a rather complex functional dependence on frequencies ω, the
density of the medium d, and other variables, n = n(ω, d, ...).

For the evident intent of salvaging the desired universality of special relativity, speeds
c < co have been interpreted until recently by reducing the propagation of light within a
physical medium to the propagation of photons in vacuum scattering from atom to atom.
However, such a reduction is not evidently applicable to the propagation within physical
media of radio waves with wavelength of the order of one meter. The same reduction
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also fails to provide a quantitative interpretation of the dependence of the speed on the
frequency, as visible by the naked eye in Newton’s spectral decomposition of light. In
any case, the reduction of light to photons scattering among atoms has been definitely
disproved by the recent experimental evidence of speeds c > co occurring within special
guides or within media of high density (see Ref. (120) and literature quoted therein).

An illustration of the inapplicability (and not of the ”violation”) of special relativity
within physical media is given by the propagation of light and particles in water, where
the speed of light is of the order of c = 2× co/3 while electrons can propagate with speeds
bigger than c, resulting in the emission of the Cerenkov light. If the local speed of light c
is assumed as the universal invariant, then the propagation of electrons at speeds v > c is
a violation of the principle of causality. If the speed of light in vacuum co is assumed as
the universal invariant in water, there is the violation of the relativistic law of addition
of two speeds of light c because it does not yield the local speed of light c, and there is
the violation of other basic axioms of special relativity (see monograph (55) for additional
problematic aspects).

It should be also indicated that, when applied to the propagation of light and particles
within physical media, special relativity activates the catastrophic inconsistencies of The-
orem 3.1. This is due to the fact that the transition from the speed of light in vacuum to
that within physical media requires a noncanonical or nonunitary transform. This point
can be best illustrated by using the metric originally proposed by Minkowski, which can
be written η = Diag.(1, 1, 1,−c2

o). Then, the transition from co to c = co/n in the metric
can only be achieved via a noncanonical or nonunitary transform

η = Diag.(1, 1, 1,−c2
o) → η̂ = Diag.(1, 1, 1,−co/n

2) = U × η × U †, (3.68a)

U × U † = Diag.(1, 1, 1, 1/n2) 6= I. (3.68b)

An invariant resolution of the above inconsistencies and limitations has been provided
by the lifting of special relativity into a new formulation today known as isorelativity, or
Lorentz-Poincaré-Einstein-Santilli isorelativity, where the term ”isorelativity” stands to
indicate that the principle of relativity applies on isospacetime over isofields, and not on
its projection on ordinary spacetime. Also, the additional characterization of ”special”
is redundant because, as review below, isorelativity achieves a geometric unification of
special and general relativities. In this section we outline the isotopies of special relativity,
while the inclusion of classical and quantum gravity is done in Section 3.13.

Isorelativity was first proposed by R. M. Santilli in Ref. (26) of 1983 via the first
invariant formulation of iso-Minkowskian spaces and related iso-Lorentz symmetry. The
studies were then continued in: Ref. (11) of 1985 with the first isotopies of the rotational
symmetry; Ref. (28) of 1993 with the first isotopies of the SU(2)-spin symmetry; Ref. (29)
of 1993) with the first isotopies of the Poincaré symmetry; and Ref. (33) of 1998 with the
first isotopies of the SU(2)-isospin symmetries, Bell’s inequalities and local realist. The
studies were then completed with memoir (15) of 1998) presenting a comprehensive formu-
lation of the iso-Minkowskian geometry, including its formulation via the mathematics of
the Riemannian geometry (such iso-Christoffel’s symbols, isocovariant derivatives, etc.).
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Numerous independent studies on isorelativity are available in the literature (see, e.g.,
Refs. (63-68) and [8-11]), such as: Aringazin’s proof (192) of the direct universality
of the Lorentz-Poincaré-Santilli isosymmetry for all infinitely possible spacetimes with
signature (+, +, +,−); Mignani’s exact representation (118) of the large difference in
cosmological redshifts between quasars and galaxies when physically connected; the exact
representation of the anomalous behavior of the meanlifes of unstable particles with speed
by Cardone et al (110,11); the exact representation of the experimental data on the Bose-
Einstein correlation by Santilli (112) and Cardone and Mignani (113); the invariant and
exact validity of the iso-Minkowskian geometry within the hyperdense medium in the
interior of hadrons by Arestov et al. (120); the first exact representation of molecular
features by Santilli and Shillady (125,126); and numerous others.

Evidently we cannot review isorelativity in the necessary details to avoid a prohibitive
length. Nevertheless, to achieve minimal self-sufficiency of this presentation, it is impor-
tant to outline at least its main structural lines.

The central notion of isorelativity is the lifting of the basic unit of the Minkowski space
and of the Poincaré symmetry, I = Diag.(1, 1, 1, 1), into a 4 × 4-dimensional, nowhere
singular and positive-definite matrix Î = Î4×4 with an unrestricted functional dependence
on local spacetime coordinates x, speeds v, frequency ω, wavefunction ψ, its derivative
∂ψ, etc.,

I = Diag.(1, 1, 1) → Î(x, v, ω, ψ, ∂ψ, ...) = 1/T̂ (x, v, ω, ψ, ∂ψ, ...) > 0. (3.69)

Isorelativity can then be constructed via the method of Section 3.10, namely, by assuming
that the basic noncanonical or nonunitary transform coincides with the above isounit
(where the diagonalization is permitted by its Hermiticity)

U × U † = Î = Diag.(g11, g22, g33, g44), gµµ = gµµ(x, v, ω, ψ, ∂ψ, ...) > 0, µ = 1, 2, 3, 4,
(3.70)

and then subjecting the totality of quantities and their operation of special relativity to
the above transform.

Let M(x, η, R) be the Minkowski space with local coordinates x = (xµ), metric
η = Diag.(1, 1, 1,−1) and invariant x2 = (xµ × ηµν × xν

×I ∈ R. The fundamental space

of isorelativity is the Minkowski isospace (26,15) and related topology (14), M̂(x̂, η̂, R̂)
characterized by the dual lifting of the basic unit (and related field) and the inverse lifting
of the metric as per rules (3.35)

I = Diag.(1, 1, 1, 1) → U × I × U † = Î = 1/T̂ , (3.71a)

η = Diag.(1, 1, 1,−1)× I → (U †−1 × η × U−1)× Î = η̂ =

= T̂ × η = Diag.(g11, g22, g33,−g44)× Î , (3.71b)

with consequential isotopy of the basic invariant

x2 = (xµ × ηµν × xν
×I ∈ R →
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→ U × x2 × U † = x̂2̂ = (x̂µ×̂m̂µν × xν
×I ∈ R, (3.72)

whose projection in conventional spacetime can be written

x̂2̂ = [xµ × η̂µν(x, v, ω, ψ, ∂ψ, ...)× xν
] × Î , (3.73)

The nontriviality of the above lifting is illustrated by the fact that Minkowski-Santilli
isospaces include as particular spaces all possible spacetimes, such as the Riemannian,
Finslerian, non-Desarguesian and any other space with the signature (+, +, +,−). More-
over, the iso-Minkowskian metric η̂ depends explicitly on the local coordinates. Therefore,
the Minkowski-Santilli isogeometry requires for its formulation the isotopy of all tools of
the Riemannian geometry, such as the iso-Christoffel symbols, isocovariant derivative, etc.
(see for brevity Ref. (15)). Despite that, one should keep in mind that, in view of the
positive-definiteness property (34.79), the Minkowski-Santilli isogeometry coincides at the
abstract level with the conventional Minkowski geometry, thus having a null isocurvature
(because of the basic mechanism of deforming the metric η by the amount T̂ (x, ...) while
deforming the basic unit of the inverse amount Î = 1/T̂ ).

It should be also noted that, following the publication in 1983 of Ref. (26), numerous
papers on ”deformed Minkowski spaces” have appeared in the physical and mathemat-
ical literature (generally without a quotation of their origination in Ref. (29)). These
”deformations” are formulated via conventional mathematics and, consequently, they all
suffer of the catastrophic inconsistencies of Theorem 3.1. By comparison, isospaces are
formulated via isomathematics and, therefore, they resolve the inconsistencies of Theorem
3.1, as shown in Section 3.9. This illustrates the necessity of lifting the basic unit and
related field jointly with any noncanonical lifting of canonical metrics.

Let P (3.1) be the conventional Poincaré symmetry with the well known ten gener-
ators Jµν , Pµ and related commutation rules. The second basic tool of isorelativity is

the Poincaré-Santilli isosymmetry P̂ (3.1) which can be constructed via the isotheory of
Section 3.5, resulting in the isocommutation rules (26,29)

[Jµν ,̂Jαβ] = i× (η̂να × Jβµ − η̂να × Jβν − η̂nuβ × Jαµ + η̂µβ × Jαν), (3.74a)

[Jµν ,̂Pα] = i× (η̂µα × Pν − η̂να × Pµ), [Pµ̂,Pν] = 0, (3.74b)

. where we have followed the general rule of the Lie-Santilli isotheory according to which
isotopies leave observables unchanged (since Hermiticity coincides with iso-Hermiticity)
and merely change the operations among them.

Isorelativistic kinematics is then based on the following two iso-invariants:

P 2̂ = Pµ×̂P µ = P µ × ηµν × P ν = Pk × gkk × Pk − p4 × g44 × P4, (3.75a)

W 2̂ = Wµ×̂W µ, Wµ = ε̂µαβρ×̂Jαβ×̂P ρ. (3.75b)

Since Î > 0, it is easy to prove Lemma 3.3, namely, that the Poincaré-Santilli isosym-
metry is isomorphic to the conventional symmetry. It then follows that the isotopies
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increase dramatically the arena of applicability of the Poincaré symmetry, from the sole
Minkowskian spacetime to all infinitely possible spacetimes.

To understand the physical, chemical and biological applications outline in this pa-
per, the reader should be aware that all ”particles” considered hereon are assumed to
be ”isoparticles”, that is, irreducible isorepresentation of the Poincaré-Santilli isosymme-
try, namely, particles are assumed to be extended, generally nonspherical and deformable
under Hamiltonian and non-Hamiltonian interactions.

Since any interaction imply a renormalization of physical characteristics, it is evident
that the transition form particles to isoparticles, that is. from motion in vacuum to
motion within physical media, implies an alteration (called isorenormalization) of all the
intrinsic characteristics, such as rest energy, magnetic moment, charge, etc. As we shall
see in Section 3.14, such isorenormalization have permitted the first exact numerical
representation of nuclear magnetic moments which had resulted to be impossible for
quantum mechanics despite about 75 years of attempts.

The explicit form of the Poincaré-Santilli isotransforms leaving invariant line element
(3.73) are given by:

(1) The isorotations Ô(3) : x̂′ = <̂(θ̂)×̂x̂, θ̂ = θ × Îθ ∈ R̂θ (11) which, for isorotations
in the (1, 2) isoplane, are given by

x1′ = x1 × cos[θ × (g11 × g22)
1/2]− x2 × g22 × g−1

11 × sin[θ × (g11 × g22)
1/2], (3.76a)

x2′ = x1 × g11 × g−1
22 × sin[θ × (g11 × g22)

1/2] + x2 × cos[θ × (g11 × g22)
1/2]. (3.76b)

For the general expression in three dimensions interested reader can inspect Ref. (55) for
brevity.

Note that, since Ô(3) is isomorphic to O(3), Ref. (11) proved that, contrary to a
popular belief throughout the 20-th century, the rotational symmetry remains exact for
all possible signature-preserving (+,+,+) deformations of the sphere, of course, when
treated with the appropriate mathematics.

The above reconstruction of the exact rotational symmetry can be geometrically vi-
sualized by the fact that all possible signature-preserving deformations of the sphere are
perfect spheres in isospace called isosphere. This is due to the fact that ellipsoidical de-
formations of the semiaxes 1k → 1/n2

k are compensated on isospaces over isofields by the
inverse deformation of the related unit 1k → n2

k. Therefore, by recalling structure (3.35)

of the isoinvariant, on iso-Euclidean space we have the perfect isosphere r̂2̂ = r̂2
1 + r̂2

2 + r̂2
3

with exact Ô(3) symmetry while its projection on the conventional Euclidean space is the
ellipsoid r2

1/n
2
1 + r2

2/n
2
2 + r2

3/n
2
3 with broken O(3) symmetry.

(2) The Lorentz-Santilli isotransforms Ô(3.1) : x̂′ = Λ̂(v̂, ...)×̂x̂, v̂ = v × Îv ∈ R̂v

(26,29) which, for the case of isorotation in the (3, 4) isoplane, can be written

x1′ = x1, (3.77a)

x2′ = x2, (3.77b)

x3′ = x3 × cosh[v × (g33 × g44)
1/2]−
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−x4 × g44 × (g33 × g44)
−1/2 × sinh[v × (g33 × g44)

1/2] =

= γ̂ × (x3 − β × x4), (3.77c)

x4′ = −x3 × g33 × (g33 × g44)
−1/2 × sinh[v(g33 × g44)

1/2]+

+x4 × cosh[v × (g33 × g44)
1/2] =

= γ̂ × (x4 − β̂ × x3), (3.77d)

β̂ =
vk × gkk × vk

co × g44 × co

, γ̂ =
1

(1− β̂2)1/2
. (3.77e)

For the general expression interested readers can inspect Ref. (55).
Ref. (26) proved that, contrary to another popular belief throughout the 20-th cen-

tury, the Lorentz symmetry remains exact for all possible signature preserving (+,+,+,1)
deformations of the Minkowski space, of course, when treated with the appropriate math-
ematics.

The above exact reconstruction of the Lorentz symmetry can be geometrically visu-
alized by noting that the light cone x2

3 − c2
o × t2 = 0 can only be formulated in vacuum

while within physical media we have the generic hyperboloid r2
3 − c2

o × t2/n2(ω, ...) = 0.
However, it is an instructive exercise for interested readers to prove that the isolight cone
(that is, the light cone on isospace over isofields) is the perfect cone r̂2

3 − c2
o × t̂ = 0

with the exact symmetry Ô(3.1) while its projection on conventional space is given by
r2
3 − c2

o × t2/n2(ω, ...) = 0 with broken Lorentz symmetry.

(3) The isotranslations T̂ (4) : x̂′ = T̂ (â, ...)̂] × x = x̂ + Â(â, x, ...), â = a × Îa ∈ R̂a

which can be written
xµ′ = xµ + Aµ(a, ...), (3.78a)

Aµ = aµ(gµµ + aα × [g,iµ̂,Pα]/1! + ...), (3.78b)

where there is no summation on the µ indices.
Note that the isotranslations are highly nonlinear (thus non-inertial) in conventional

spacetime although they are isolinear (thus inertial) in isospace. This illustrates the reason
why conventional notion of relativity are solely applicable in spacetime, thus illustrating
the reason of the name ”isorelativity.”

(4) The novel isotopic invariance Î : x̂′ = ŵ×̂x̂ = w × x̂, Î ′ = w × Î, where w is a
constant (29),

Î → Î ′ = ŵ×̂Î = w × Î = 1/T̂ ′, (3.79a)

x̂2̂ = (xµ × η̂µν × xν
) × Î ≡ x̂′2̂ = [xµ × (w−1 × η̂µν)× xν

] × (w × Î), (3.79b)

Therefore, the Poincaré-Santilli isosymmetry can be written

P̂ (3.1) = Ô(3.1)×̂T̂ (4)×̂Î (3.80)

thus having eleven (rather than ten) dimensions with parameters θk, vk, aµ, w, k = 1, 2, 3, µ =
1, 2, 3, 4, the 11-th dimension being characterized by invariant (3.78). Note that, contrary
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to popular beliefs, the conventional Poincaré symmetry is also eleven dimensional since
invariance (3.78) also holds for conventional spacetime.

The simplest possible realization of the above formalism for isorelativistic kinematics
can be outlined as follows (see Section 3.13 for the isogravitational realization). The
first application of isorelativity is that of providing an invariant description of locally
varying speeds of light propagating within physical media. For this purpose a realization of
isorelativity requires the knowledge of the density of the medium in which motion occurs.

The simplest possible realization of the fourth component of the isometric is then given
by the function g44 = n2

4(x, ω, ...) normalized to the value n4 = 1 for the vacuum (note
that the density of the medium in which motion occur cannot be described by special
relativity). Representation (3.68) then follows with invariance under P̂ (3.1).

In this case the quantities nk, k = 1, 2, 3, represent the inhomogeneity and anisotropy
of the medium considered. For instance, if the medium is homogeneous and isotropic
(such as water), all metric elements coincide, in which case

Î = Diag.(g11, g22, g33, g44) = n2
4 ×Diag.(1, 1, 1, 1), (3.81a)

x̂2̂ =
x2

n2
4

× n2
4 × I ≡ x2, (3.81b).

thus confirming that isotopies are hidden in Minkowskian axioms, and this may be a
reason why they have nog been discovered until recently.

Next, isorelativity has been constricted for the invariant description of systems of ex-
tended, nonspherical and deformable particles under Hamiltonian and non-Hamiltonian
interactions. Practical applications then require the knowledge of the actual shape of
the particles considered, here assumed for simplicity as being spheroidal ellipsoids with
semiaxes n2

1, n
2
2, n

2
3. Note that them minimum number of constituents of a closed non-

Hamiltonian system is two. In this case we have shapes represented with nαk, α =
1, 2, , ..., n. Applications finally require the identification of the nonlocal interactions,
e.g., whether occurring on an extended surface or volume. As an illustration, two spin-
ning particles denoted 1 and 2 in condition of deep mutual penetration and overlapping of
their wavepackets (as it is the case for valence bonds), can be described by the following
Hamiltonian and total; isounit

total isounit

H =
p1 × p1

2×m1

+
p2 × p2

2×m2

+ V (r), (3.82a)

ÎTot = Diag.(n2
11, n

2
12, n

2
13, n

2
14)×Diag.(n2

21, n
2
22, n

2
23, n

2
24)×

×eN×(ψ̂1/ψ1+ψ̂2/ψ2)×
∫

ψ̂1↑(r)†×ψ̂2↓(r)×dr3

, (3.82b)

where N is a constant. Note the nonlinearity in the wavefunctions, the nonlocal-integral
character and the lack of representation of all the above features via a Hamiltonian.
From the above examples interested readers can then represent any other closed non-
Hamiltonian systems.
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The third important part of isorelativity is given by the following isotopies of con-
ventional relativistic axioms which, for the case of motion along the third axis, can be
written (29):

ISOAXIOM I. The projection in our spacetime of the maximal causal invariant speed
is given by:

VMax = co × g
1/2
44

g
1/2
33

= co
n3

n4

=
c

n3

. (3.83)

This isoaxioms resolves the inconsistencies of special relativity recalled earlier for particles
and electromagnetic waves propagating in water. In fact, water is homogeneous and
isotropic, thus requiring that g44 = g33 = 1/n2, where n is the index of refraction. In this
case the maximal causal speed for a massive particle is co as experimentally established,
e.g., for electrons, while the local speed of electromagnetic waves is c = co/n., as also
experimentally established.

Note that such a resolution requires the abandonment of the speed of light as the
maximal causal speed for motion within physical media, and its replacement with the
maximal causal speed of particles. It happens that in vacuum these two maximal causal
speeds coincide. However, even in vacuum the correct maximal causal speed remains that
of particles and not that of light, as generally believed. At any rate, physical media are
generally opaque to light but generally not to particles. Therefore, the assumption as
the maximal causal speed as that of light which cannot propagate within the medium
considered would be evidently vacuous.

It is an instructive exercise for the interested readers to prove that the maximal causal
speed of particles on isominkowski space over an isofield remains co.

ISOAXIOM II. The projection in our spacetime of the isorelativistic addition of speeds
within physical media is given by:

vTot =
v1 + v2

1 + v1×g33×v2

co×g44×co

=
v1 + v2

1 +
v1×n2

4×v2

co×n2
3×co

(3.84)

We have again the correct occurrence that the sum of two maximal causal speeds in water,
Vmax = co× (n3/n4), yields the maximal causal speed in water, as the reader is encouraged
to verify. Note that the such a result is impossible for special relativity. Note also that
the isorelativistic sum of two speeds of lights in water, c = co/n, does not yield the speed
of light in water, thus confirming that the speed of light within physical media, assuming
that they are transparent to light, is not the fundamental maximal causal speed.

ISOAXIOM III. The projection in our spacetime of the isorelativistic laws of dilation
of time to and contraction of length `o and the variation of mass mo with speed are given
by:

t = γ̂ × to, ` = γ̂−1 × `o,m = γ̂ ×mo. (3.85)
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Note that in water these values coincide with the relativistic one as it should be since
particles such as the electrons have in water the maximal causal speed c0. Note again the
necessity of avoiding the interpretation of the local speed of light as the maximal local
causal speed. Note that the mass diverges at the maximal local causal speed, but not at
the local speed of light..

ISOAXIOM IV. The projection in our spacetime of the iso-Doppler law is given by
(for 90o angle of aberration):

ω = γ̂ × ωo. (3.86)

This isorelativistic axioms permits an exact, numerical and invariant representation of the
large differences in cosmological redshifts between quasars and galaxies when physically
connected. In this case light simply exit the huge quasar chromospheres already redshifted
due to the decrease of the speed of light, rather than the speed of the quasars (118).

Isoaxiom IV also permits a numerical interpretation of the internal blue- and red-shift
of quasars due to the dependence of the local speed of light on its frequency. Finally,
Isoaxiom IV predicts that a component of the predominance toward the red of sunlight
at sunset is of iso-Doppler nature in view of the bigger decrease of the speed of light at
sunset as compared to the same speed at the zenith (evidently because of the travel within
a comparatively denser atmosphere).

ISOAXIOM V. The projection in our spacetime of the isorelativistic law of equivalence
of mass and energy is given by:

E = m× c2
o × g44 = m× c2

o

n2
4

. (3.87)

Among various applications, Isoaxiom V removes any need for the ”missing mass”
in the universe. This is due to the fact that all isotopic fits of experimental data agree
on values g44 À 1 within the hyperdense media in the interior of hadrons, nuclei and
stars (55,120). As a result, Isoaxiom V yields a value of the total energy of the universe
dramatically bigger than that believed until now under the assumption of the universal
validity of the speed of light in vacuum. For other intriguing applications, e.g., for the rest
energy of hadronic constituents, we refer the interested reader to monographs (55,61).

The isodual isorelativity for the characterization of antimatter can be easily constructed
via the isodual map of Section 2, and its explicit study is left to the interested reader for
brevity.

3.12: Isorelativistic Hadronic Mechanics and its isodual. The isorelativistic ex-
tension of nonrelativistic hadronic mechanics is readily permitted by the Poincaré-Santilli
isosymmetry. In fact, iso-invariant (3.75a) implies the following iso-Gordon equation on
Ĥ over Ĉ

p̂µ×̂|ψ̂ >= −î×̂∂̂µ|ψ̂ >= −i× Îν
µ × ∂ν |ψ̂ >, (3.88a)

(p̂µ×̂p̂µ + m̂2
o×̂ĉ4)×̂|ψ̂ >= (η̂αβ × ∂α × ∂β + m2

o × c4)× |ψ̂ >= 0. (3.88b)
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The linearization of the above second-order isoinvariant into the iso-Dirac equation
has been studied in detail in Ref. (29) as well as by several other authors (although
generally without the use of isomathematics, thus losing the invariance). By recalling
the correct structure (2.34) of Dirac’s equation as the Kronecker product of a spin 1/2
massive particle and its antiparticle, the iso-Dirac’s equation is formulated on the total
isoselfadjoint isospace and related isosymmetry

M̂Tot = [M̂ orb(x̂, η̂, R̂)× Ŝspin(2)]× [M̂dorb(x̂d, η̂d, R̂d)× Ŝdspin(2)] = M̂dTot, (3.89a)

ŜTot = P̂ (3.1)× P̂ d(3.1) = ŜdTot, (3.89b)

and can be written (29)

[γ̂µ×̂(p̂µ − ê×̂Âµ) + î×̂m̂]×̂|φ(x) >= 0, (3.90a)

γ̂µ = gµµ × γµ × Î (3.90b)

where the γ’s are the conventional Dirac matrices. Note the appearance of the isometric
elements directly in the structure of the gamma matrices and their presence also when
the equation is projected in the conventional spacetime.

A realization via the iso-Dirac equation of the Poincaré-Santilli isosymmetry with
isocommutators (3.74) is given by (29)

Jµν = (Sk, Lk4), Pµ, (3.91a)

Sk = (ε̂kij×̂γ̂i×̂γ̂j)/2, Lk4 = γ̂k×̂γ̂4/2, Pµ = p̂µ (3.91b)

The notion of ”isoparticle” can be best illustrated with the above realization because it
implies that,in the transition from motion in vacuum (as particles have been solely detected
and studied until now) to motion within physical media, particles generally experience the
alteration, called ”mutation,” of all intrinsic characteristics, as illustrated by the following
isoeigenvalues which are implied by isocommutation rules (3.74),

Ŝ 2̂×̂|ψ̂ >=
g11 × g22 + g22 × g33 + g33 × g11

4
× |ψ̂ >, (3.92a)

Ŝ3×̂|ψ̂ >=
(g11 × g22)

1/2

2
× |ψ̂ > . (3.92b)

The mutation of spin then implies a necessary mutation of the intrinsic magnetic
moment which is given by (29)

µ̃ = (
g33

g44

)1/2 × µ, (3.93)

where µ is the conventional magnetic moment for the same particle when in vacuum. The
mutation of the rest energy and of the remaining characteristics has been identified before
via the isoaxioms.

The construction of the isodual isorelativistic hadronic mechanics is left to the inter-
ested reader by keeping in mind that the iso-Dirac equation is isoselfdual as the conven-
tional equation.
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To properly understand the above results, one should keep in mind that the muta-
tion of the intrinsic characteristics of particles is solely referred to the constituents of a
hadronic bound state under condition of mutual penetration of their wavepackets (such as
one hadronic constituent) under the condition of recovering conventional characteristics
for the hadronic bound state as a whole (the hadron considered), much along the original
Newtonian subsidiary constrains on non-Hamiltonian forces, Eqs. (3.42b)-(3.42d).

The reader should also keep in mind that, at this kinematical level prior to the in-
troduction of gravity, g44 = 1/n2

4 represent the density of the medium in which motion
occurs, normalized to the value g44 = 1, n4 = 1 for the vacuum. Also, the inhomogeneity
of the medium is represented by the functional dependence of its density, e.g., from the
radial distance r and other variables, g44 = g44(r, ...). The anisotropy of the medium is
represented by g33, e.g., for the case of the spheroidal ellipsoid for which g11 = g22 6= g33.

Finally, isotopic invariance (3.79) implies the capability of rescaling the radius of a
sphere. Therefore, for the case of the perfect sphere we can always have g11 = g22 = g33 =
g44 in which case the magnetic moment is not mutated. These results recover conventional
classical knowledge according to which the alteration of the shape of a charged and spinning
body implies the necessary alteration of its magnetic moment.

It should be also stressed that the above mutations violate the unitary condition when
formulated on a conventional Hilbert spaces, with consequential catastrophic inconsisten-
cies. As an illustration, the violation of causality and probability law has been established
for all eigenvalues of the angular momentum M different than the quantum spectrum
M2 × |ψ >= `(` + 1) × |ψ >, ` = 0, 1, 2, 3, ... . As a matter of fact, these inconsis-
tencies are the very reason why the mutations of internal characteristics of particles for
bound states at short distances could not be admitted within the framework of quantum
mechanics.

By comparison, hadronic mechanics has been constructed precisely to recover unitar-
ity on iso-Hilbert spaces over isofields, thus permitting an invariant description of internal
mutations of the characteristics of the constituents of hadronic bound states, while recov-
ering conventional features for states as a whose.

As we shall indicate at the end of this section, far from being mathematical curiosities,
the above mutations imply basically new structure models of hadrons, nuclei and stars,
with consequential, new clean energies and fuels. These new advances were prohibited by
quantum mechanics precisely because of the preservation of the intrinsic characteristics
of the constituents in the transition from bound states at large mutual distance, for which
no mutation is possible, to the bound state of the same constituents in condition of
mutual penetration, in which case mutations have to be admitted in order to avoid the
replacement of a scientific process with unsubstantiated personal beliefs one way or the
other.

The best illustration of the iso-Dirac equation is, therefore, that for which it was
constructed (30), to describe the transition for the electron in the hydrogen atom, to the
same electron when compressed in the hyperdense medium in the interior of the proton,
namely, to achieve a quantitative and invariant representation of the synthesis of the
neutron according to Rutherford as a ”hydrogen atom compressed in the core of a star.”
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If special relativity, relativistic quantum mechanics and the conventional Dirac equa-
tion are assumed to be exactly valid also for the motion of the electron within the hy-
perdense medium in the interior of the proton, the neutron cannot be a bound state of a
proton and an electron at short distances, thus mandating the assumption of undetectable
constituents which cannot be produced free, as well known.

One of the most important results of hadronic mechanics has been the proof at the
nonrelativistic (214) and relativistic level (30) that a hadronic bound state of an isoprotons
and an isoelectron represents all characteristics of the neutron, including its rest energy,
spin, charge, parity, charge radius, anomalous magnetic moment and spontaneous decay.

The societal implications of the above alternative are such to require the surpassing
of traditional academic interests on pre-established doctrines. In fact, no new energy
is conceivably possible under the assumption of the exact validity within a hadron of
the Minkowski geometry, the special relativity and relativistic quantum mechanics, with
consequential hadronic constituents which cannot be produced free. On the contrary,
the assumption that isorelativity within the hyperdense medium inside hadrons implies
that the hadronic constituents are indeed produced free in the spontaneous decay and,
therefore, they can indeed be stimulated to decay, thus implying basically new energies
(58).

3.13: Isogravitation, iso-grand-unification and isocosmology. There is no doubt
that the classical and operator formulations of gravitation on a curved space has been
the most controversial theory of the 20-th century because of an ever increasing plethora
of problematic aspects which have remained basically unresolved due to the lack of their
acknowledgment, let alone their resolution, by leading research centers in the field (see,
for instance, H. E. Wilhelm (220) and references quoted therein).

One of the reason why special relativity in vacuum has a majestic axiomatic consis-
tence is its invariance under the poincaré symmetry. Recent studies have shown that
the formulation of gravitation on a curved space or, equivalently, rathe formulation of
gravitation based on as ”covariance,” is necessarily noncanonical at the classical level
and nonunitary at the operator level, thus suffering of all catastrophic inconsistencies of
Theorem 3.1 (45,46). These catastrophic inconsistencies can only be resolved via a new
conception of gravity based on a universal invariance, rather than covariance.

Additional studies have identified profound axiomatic incompatibilities between grav-
itation on a curved space and electroweak interactions. These incompatibilities have re-
sulted to be responsible for the lack of achievement of an axiomatically consistent grand
unification since Einstein’s times (32,35,37), among which we mention:

1) Electroweak theories are based on invariance while gravitation is not;
2) Electroweak theories are flat in their axioms while gravitation is not; and
3) Electroweak theories are bona fide field theories, thus admitting positive and nega-

tive energy solutions, while gravitation can only admit positive energies.
No knowledge of isotopies can be claimed without a knowledge that isorelativity has

been constructed also to resolve at least some of the controversies on gravitation. The
fundamental requirement is the abandonment of the formulation of gravity on a Rieman-
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nian space and its formulation instead on an iso-Minkowskian space (15) via the following
basic steps:

I) Factorization of any given Riemannian metric g(x) into a nowhere singular and
positive-definite 4× 4 matrix T̂ (x) times the Minkowski metric η,

g(x) = T̂grav(x)× η; (3.94)

II) Assumption of the inverse of T̂grav as the fundamental unit of the theory,

Îgrav(x) = 1/T̂grav(x); (3.95)

III) Submission of the totality of the Minkowski space and relative symmetries to the
noncanonical/nonunitary transform

U(x)× I†(x) = Îgrav. (3.96)

The above procedure yields the isominkowskian spaces and related geometry M̂(x̂, η̂, R̂),
(15), resulting in a new conception of gravitation, called isogravity, with the following main
features (15,32,35,37,55):

i) Isogravity is characterized by a universal symmetry (and not a covariance), the
Poincaré-Santilli isosymmetry P̂ (3.1) for the gravity of matter with isounit Îgrav(x) with

the isodual isosymmetry P̂ d(3.1) for the gravity of antimatter, and the isodual symmetry
P̂ (3.1)× P̂ d(3.1) for the gravity of matter-antimatter systems;

ii) All conventional field equations, such as the Einstein-Hilbert and other field equa-
tions, can be identically formulated via the Minkowski-Santilli isogeometry since the latter
preserves all the tools of the conventional Riemannian geometry, such as the Christoffel’s
symbols, covariant derivative, etc. (15);

iii) Isogravitation is isocanonical; at the classical level and isounitarity at the operator
level, thus resolving the catastrophic inconsistencies of Theorem 3.1;

iv) An axiomatically consistent operator version of gravity always existed and merely
creeped in un-noticed through the 20-th century because gravity is embedded where no-
body looked for, in the unit of relativistic quantum mechanics, and it is given by isorela-
tivistic hadronic mechanics as in Eqs. (3.88) and (3.90).

v) The basic feature permitting the above advances is the abandonment of curvature for
the characterization of gravity (namely, curvAture characterized by metric g(x) referred
to the unit I) and its replacement with isoflatness, namely, the verification of the axioms
of flatness in isospace, while preserving conventional curvature in its projection on con-
ventional spacetime (or, equivalently, curvature characterized by the g(x) = T̂grav(x)× η

referred to the isounit Îgrav(x) in which case curvature becomes null due to the inter-

relation Îgrav(x) = 1/T̂grav(x)) (15).
A resolution of numerous controversies on classical formulations of gravity then follow

from the above main features, such as: the resolution of the century old controversy on
the lack of existence of consistent total conservation laws for gravitation on a Riemannian
space (which controversy is resolved under the universal P̂ (3.1) symmetry by mere visual
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verification that the generators of the conventional and isotopic Poincaré symmetry are
the same, since they represent conserved quantities in the absence and in the preserve
of gravity); the controversy on the fact that gravity on a Riemannian space admits a
well defined ”Euclidean,” but not ””Minkowskian” limit (which controversy is trivially
resolved by isogravity via the limit Îgrav(x) → I); and others.

A resolution of the controversies on quantum gravity can be seen from the prop-
erty that relativistic hadronic mechanics is a quantum formulation of gravity whenever
T̂ = T̂grav which is as axiomatically consistent as the conventional relativistic quan-
tum mechanics because the two formulations coincide, by construct, at the abstract,
realization-free level. As an illustration, whenever T̂grav = Diag.(g11, g22, g33, g44), the
iso-Dirac equation (3.90) provides a direct rtepresentation of the conventional electrom-
nagnetic interactions experienced by an electron, represented by the fevot potential Aµ,
plus gravitational interactions represented by the isogamma matrices.

Once curvature is abandoned in favor of the broader isoflatness, the axiomatic incom-
patibilities existing between gravity and electroweak interactions are resolved because:
isogravity possesses, at the abstract level, the same Poincaré invariance of electroweak
interactions; isogravity can be formulated on the same flat isospace of electroweak the-
ories; and isogravity admits positive and negative energies in the same way as it occurs
for electroweak theories. An axiomatically consistent iso-grand-unification then follows
(32,35).

Note that the above grand-unification requires the prior geometric unification of the
special and general relativities, which is achieved precisely by isorelativity and its un-
derlying iso-Minkowskian geometry. In fact, special and general relativities are merely
differentiated in isospecial relativity by the explicit realization of the unit. In particular,
black holes are now characterized by the zeros of the isounit (55)

Îgrav(x) = 0. (3.97)

The above formulation recovers all conventional results on gravitational singularities, such
as the singularities of the Schwarzschild’s metric, since they are all described by the
gravitational content T̂grav(x) of g(x) = T̂grav(x)× η, since η is flat.

This illustrates again that all conventional results of gravitation, including experimen-
tal verifications, can be reformulated in invariant form via isorelativity.

Moreover, the problematic aspects of general relativity mentioned earlier refer to the
exterior gravitational problem. Perhaps greater problematic aspects exist in gravitation on
a Riemannian space for interior gravitational problems, e.g., because of the lack of charac-
terization of basic features, such as the density of the interior problem, the locally varying
character of gravitation, etc. These additional problematic aspects are also resolved by
isospecial relativity due to the unrestricted character of the functional dependence of the
isometric which therefore permits a direct geometrization of the density, local; variation
of the speed of light, etc.

The cosmological implications are also intriguing. In fact, isorelativity permits a new
conception of cosmology based on the universal invariance P̂ (3.1)×P̂ d(3.1) in which there
is no need for the ”missing mass” (as indicated earlier), time and the speed of light become
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local variables, and the detected universe has a dimension considerably smaller than that
currently believed (because some of the cosmological redshift is due to the decrease of the
speed of light in chromospheres, rather than speed of quasars). Also, at the limit case
of equal distribution of matter and antimatter in the universe, isocosmology predicts that
the universe has identically null total energy, identically null total time, and identically
null other physical characteristics, thus permitting mathematical studies of its creation
(because of the lack of singularities at its formation).

3.14: Experimental verifications and scientific applications. Nowadays, isotopies
in general, and the isotopic branch of hadronic mechanics in particular, have clear ex-
perimental verifications in classical physics, particle physics, nuclear physics, chemistry,
superconductivity, biology and cosmology, among which we quote the following represen-
tative verifications:

? The first and only known optimization of the shape of extended objects moving
within resistive media via the optimal control theory (14) following the first achievement of
the universality of the isoaction (3.50) for all possible resistive forces; ? The axiomatically
correct formulation of special relativity in terms of the proper time by T. Gill and his
associates (202)-(206);

? The first identification of the connection between Lie-admissibility and supersym-
metries by Adler (211);

? The proof by Aringazin (192,197) of the ”universality” of Isoaxiom III, namely,
its capability of admitting as particualr cases all available anomalous time dilations via
different expensions in terms of different quantities and with different truncatiuons;

? The exact representation of the anomalous behavior of the meanlives of unstable
particles with speed by Cardone et al (110,11) that to Isoaxioms III of isorelativity;

? The exact representation of the experimental data on the Bose-Einstein correlation
by Santilli (112) and Cardone and Mignani (113) under the exact iso-Poincaré symmetry;

? The invariant and exact validity of the iso-Minkowskian geometry within the hyper-
dense medium in the interior of hadrons by Arestov et al. (120);

? The achievement of an exact confinement of quarks by Kalnay (216) and Kalnay and
Santilli (2.17) thanks to incoherence between the external and internal Hilbert spaces;

? The proof by Jannussis and Mignani (186) of the convergence of isotopic perturbative
series when conventionally divergent based on the property for all isotopic elements used
in actual models T̂ ¿ 1, thus implying that perturbative expansions which are divergent
when formulated with the conventional associative product A × B become convergent
when re-expressed in terms of the isoassociative product A×̂B = A× T̂ ×B;

? The initiation by Mignani (182) of a nonpotential-nonunitary scattering theory refor-
mulated by Santilli (55) as isounitary on iso-Hilbert spaces over isofields, thus recovering
causality and propability laws for the first known description ofscattering among extended
particles with consequential contact-nonpotential inetractions;

? The first and only known exact and invariant representation by Santilli (114,115) of
nuclear magnetic moments and other nuclear characteristics thanks to interior mutation of
type (3.93), which representation has escaped quantum mechanics for about one century;
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? The first and only known model by Animalu (170) and Animalu and Santilli (116)
of the Cooper pair in superconductivity with an attractive force between the two identical
electrons in excellent agreement with experimental data;

? The exact representation via isorelativity by Mignani (118) of the large difference in
cosmological redshifts between quasars and galaxies when physically connected;

? The exact representation by Santilli (117) of the internal blue- and red-shift of
quasar’s cosmological redshift;

? The elimination of the need for a missing mass in the universe by Santilli (34) thanks
to isoaxiom V.

Additional important applications of isotopies have been studied by by A. O. E. An-
imalu, A. K. Aringazin, R. Aslaner, C. Borgi, F. Cardone, J. Dunning-Davies, F. Eder,
J. Ellis, J. Fronteau, M. Gasperini, T. L. Gill, J. V. Kadeisvili, A. Kalnay, N. Kamiya,
S. Keles, C. N. Ktorides, M. G. Kucherenko, D. B. Lin, C.-X. Jiang, A. Jannussis, R.
Mignani, M. R. Molaei, N. E. Mavromatos, H. C. Myung, M. O. Nishioka, D. V. Nanopou-
los, S. Okubo, D. L. Rapoport, D. L. Schuch, D. S. Sourlas, A. Tellez-Arenas, Gr. Tsagas
N. F. Tsagas, E. Trell, R. Trostel, S. Vacaru,H. E. Wilhelm, W. Zachary, and others.
These studies are too numerous to be effectively reviewed in this memoir.

Above all, hadronic mechanics achieved the main objective for which it was built: the
first exact and invariant representation from unadulterated first axiomatic principles of
all experimental data of the hydrogen, water and other molecules by R. M. Santilli and
D. D. Shillady (125,126) (see also the comprehensive treatment in monograph (59)). The
representation was achieved via the use of nonrelativistic hadronic mechanics based on
the simple isounit (3.16) in which, as one can see, there are no free parameters for ad hoc
fits of experimental data, but only a quantitative description of wave-overlappings, with
isorelativistic extension characterized by isounit (3.82).

It should be noted that, whether in valence coupling or not, electrons repel each other.
Also, the total electric or magnetic forced between neutral atoms are identically null,
while exchange, van der Waals and other forces of current use in chemistry are basically
insufficient to represent the strength of molecular bonds (59). Studies (125,126) achieved
the first and only known strongly attractive force between pairs of identical electrons in
singlet coupling at short distance, and proved to originate from nonlocal, nonlinear and
nonpotential interactions due to deep overlappings of electron’s wavepackets in singlet
coupling (where the word ”strongly” it is not evidently referred to strong interactions).
The birth of this new, nonpotential, strongly attractive force between particles in con-
ditions of mutual penetration then implies new structure models of hadrons, nuclei and
stars (see below).

As it is well known, the exact representation of molecular data had escaped about
one century of attempts via conventional chemistry, because the missing 2% originated
precisely from the nonlocal-integral, nonlinear and nonpotential interactions due to deep
overlapping of the wavepackets of the valence electrons (Figure 2) which are beyond any
descriptive capacity of quantum mechanics.

As it is also well known, improved representations of molecular data have required
the ”screening of the Coulomb potential,” which screening cannot be qualified as char-
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acterizing a ”quantum” theory since the quantum of energy only exists for the pure
Coulomb potential. In any case, screened Coulomb potentials are nonunitary images of
the Coulomb law, thus being particular cases of the nonunitary/isounitary structure of
hadronic mechanics and chemistry (59).

The achievement of a deeper understanding of molecular bonds has far reaching sci-
entific implications. In fact, it confirms that nonlocal, nonlinear and non potential inter-
actions exist in all interior problems at large, such as the structure of hadrons, nuclei and
stars, and imply basically new structure models in which the constituents are isoparticles
(irreducible representation of the Poincaré-Santilli isosymmetry), rather than conventional
particles in vacuum.

The original proposal to build hadronic mechanics (38) of 1978 included the proof that
all characteristics of the πo meson can be represented in an exact and invariant way via
a bound state of one iso-electron ê− and its antiparticle ê+ under conditions of mutual
penetration within 10−13cm,

πo = (ê−, ê+)HM ; (3.98)

the π± meson can be represented via a bound state of three isoelectrons,

π± = (ê−, ê±, ê+)HM ; (3.99)

and the remaining mesons can be similarly identified as hadronic bound states of massive
isoparticles produced free in the spontaneous decays with the lowest mode.

Following the prior achievement of the isotopies of the SU(2) spin (28), Ref. (214) of
1990 achieved for the first time the exact and invariant representation of all character-
istic of the neutron as a nonrelativistic hadronic bound state of one isoproton and one
isoelectron according to Rutherford’s original conception of the neutron,

n = (p̂+, ê−)HM , (3.100)

while the relativistic extension was reached in Ref. (30), jointly with the first isotopies
of Dirac’s equation. Subsequently, it was easy to see that all unstable baryons can be
considered as hadronic bound states of massive isoparticles, again those generally in the
spontaneous decays with the lowest modes.

Compatibility of the above new structure models of hadrons with ordinary massive
constituents and SU(3)-color theories was achieved via the assumption that quarks are
composite, a view first expressed by Santilli (225) in 1981), and the use of hypermath-
ematics (see Section 5) with different units for different hadrons (31). This approach
essentially yields the hyperrealization ŜU(3) in which composite hyperquarks are char-
acterized by the multivalued isounit with isotopic element T̂ = (T̂u, T̂d, T̂s), resulting in
hypermultiplets of mesons, baryons, etc.

The compatibility of this hypermodel with conventional theories is established by the
isomorphism between conventional SU(3) and the hyper-ŜU(3), the latter merely being
a broader realization of the axioms of the former. The significance of this hypermodel
is illustrated by the fact that all perturbative series which are divergent for SU(3) are
turned into convergent forms because T̂u, T̂d, T̂s ¿ 1 under which, as indicated earlier, all
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divergent perturbative series expressed in terms of the conventional product A×B become
convergent when re-expressed in terms of the hytperproduct A × T̂ × B. Compatibility
with the structure model of hadrons with ordinary massive constituents is evident from
the fact that quarks result to be composed of ordinary massive isoparticles.

It should be recalled that none of the above hadronic models are possible for quantum
mechanics, e.g., because the representation of the rest energies of hadrons would require
”positive binding energies”(since, unlike similar occurrences in nuclear physics, the rest
energy of bound states (3.98)-(3.100) is much bigger than the sum of the rest energies of
the constituents. Such ”positive binding energies are prohibited by quantum mechanics
because Schroedinger’s equation become inconsistent. These and other objections were
resolved by the covering hadronic mechanics due to the isorenormalizations (also called
mutations) of the rest energies and other features of the constituents caused by nonlocal,
nonlinear and nonpotential interactions.

Predictably, the reduction of the neutron to a bound state of an isoproton and an iso-
electron permitted a new structure model of nuclei as hadronic bound states of isoprotons
and isoelectron (113,114), with the conventional quantum models based on protons and
neutron remaining valid in first approximation. The new isonuclear model permitted the
first known understanding of the reason why the deuteron ground state has spin 1 since
it is a three-body system for hadronic mechanics,

D = (p̂+, ê−, p̂+)HM , (3.101)

thus admitting 1 as the lowest possible angular momentum, while the ground state of
the deuteron quantum mechanics, D = (p+, no)QM should have spin zero since it is a two
body system. The isonuclear model also permitted the interpretation of other features
that had remained unexplained in nuclear physics for about one century such as why the
correlation among nucleons is restricted to pairs only.

In particular, the old process of keep adding potentials to the nuclear force without
ever achieving an exact representation of nuclear data has been truncated by hadronic
mechanics, due to a component of the nuclear force which is nonlocal, nonlinear and non-
potential originating from the mutual penetration of the charge distribution of nucleons
established by nuclear data (such as the ratio between nuclear volumes and the sum of
the volume of the nucleon constituents).

The reduction of neutron stars and other astrophysical bodies to isoprotons and iso-
electrons is then consequential.

3.15: Industrial applications to new clean energies and fuels. In closing, it should
be indicated that the studies on isotopies have long passed the level of pure scientific
relevance, because they now have direct industrial applications fort new clean energies
and fuels so much needed by our contemporary society.

As an illustration at the particle level, the synthesis of the neutron from one
proton and one electron according to Rutherford, Eq. (3.100), has been experimentally
confirmed by C. Borghi et al. (123) to occur also at low energies, although under a number
of conditions studied in monograph (58), and additional tests are under way.
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Once Rutherford’s original conception of the neutron is rendered acceptable by hadronic
mechanics, the electron becomes a physical constituent of the neutron (although in a mu-
tated state). In this case, hadronic mechanics predicts the capability of stimulating the
decay of the neutron via photons with suitable resonating frequencies and other means,
thus implying the first known form of ”hadronic energy” (58) (that is, energy originating
in the structure of hadrons, rather than in their nuclear aggregates), which has already
been preliminarily confirmed via an experiment conducted by N. Tsagas et al (124) (see
monograph (58) for scientific aspects and the web site www.betavoltaic.com for industrial
profiles).

As an illustration at the nuclear level, hadronic mechanics predicts a basically
new process for controlled nuclear syntheses which is dramatically different than both the
”hot” and the ”cold” fusions, and which is currently also under industrial development,
which condition prohibits its disclosure in this memoir.

As an illustration at the molecular level, the deeper understanding of the structure
of molecules has permitted the discovery and experimental verifications in Ref.s (27) (see
also the studies by Aringazin and his associates in Refs. (128-1130) and monograph (59))
of the new chemical species of magnecules consisting of clusters of individual atoms, dimers
and molecules under a new bond originating from the electric and magnetic polarization
of the orbitals of atomic electrons.

In turn, the new species of magnecules has permitted the industrial synthesis of new fu-
els without hydrocarbon structure, whose combustion exhaust resolves the environmental
problems of fossil fuels by surpassing current exhaust requirement by the U. S. Envi-
ronmental Protection Agency without catalytic converter or other exhaust purification
processes (see monograph (59) for scientific profiles and the web site www.magnegas.com
for industrial aspects).

4. CONSTRUCTION OF GENOMECHANICS FROM IRRE-
VERSIBLE PROCESSES

4.1: The scientific unbalance caused by irreversibility. As it is well known, phys-
ical, chemical or biological systems are called irreversible when their images under time
reversal, t → −t, are prohibited by causality and other laws, as it is the case for nuclear
transmutations, chemical reactions and organisms growth. Systems are called reversible
when their time reversal images are as causal as the original ones, as it is the case for
planetary and atomic structures when considered isolated from the rest of the universe
(see reprint volume (81) on irreversibility and vast literature quoted therein).

Yet another large scientific unbalance of the 20-th century has been the treatment
of irreversible systems via mathematical and physical formulations of reversible systems
which are themselves reversible, resulting in serious limitations in virtually all branches
of science. The problem was compounded by the fact that all used formulations were
essentially of Hamiltonian type, with the awareness that all known Hamiltonians are
reversible (since all known potential interactions are reversible).
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This third scientific unbalance was dismissed by academicians with vested interests in
reversible theories with unsubstantiated statements, such as ”irreversibility is a macro-
scopic occurrence which disappears when all bodies are reduced to their elementary con-
stituents.” The underlying belief is that mathematical and physical theories which are so
effective for the study of one electron in a reversible orbit around a proton are tacitly
assumed to be equally effective for the study of the same electron when in irreversible
motion in the core of a star with the local nonconservation of energy, angular momentum,
etc. These academic beliefs have been disproved by the following:

THEOREM 4.1 (224): A classical irreversible system cannot be consistently decom-
posed into a finite number of elementary constituents all in reversible conditions and,
vice-versa, a finite collection of elementary constituents all in reversible conditions cannot
yield an irreversible macroscopic ensemble.

The occurrence established by the above theorems dismiss all nonscientific conversa-
tions which have occurred on irreversibility in the 20-th century, and identify the real
scientific needs, the construction of formulations which are structurally irreversible, that
is, irreversible for all known reversible Hamiltonians, and are applicable at all levels of
study, from Newtonian mechanics to second quantization.

4.2: The forgotten legacy of Newton, Lagrange and Hamilton. It should be indi-
cated that the above scientific unbalance existed only in the 20-th century becauseNewton’s
equations (1) are generally irreversible since, as recalled in the preceding section, New-
ton’s force F (t, x, v) can be decomposed into the sum of variationally selfadjoint and
nonselfadjoint components (48,51)

mα × akα = F SA
kα + FNSA

kα , (4.1a)

F SA = −∂V/∂x, FNSA 6= −∂V/∂x, k = 1, 2, 3, α = 1, 2, ..., n. (4.1b)

It is evident that, since all known F SA are reversible, in Newtonian mechanics irreversibil-
ity originates in the contact nonpotential forces FNSA.

In a way fully aligned with Newton’s teaching, Lagrange (2) and Hamilton (3) for-
mulated their celebrated analytic equations in terms of a function, today called the La-
grangian L(x, v) and the Hamiltonian H(x, p), representing F SA, plus external terms
representing precisely the contact nonpotential forces FNSA,

d

dt

∂L(x, v)

∂v
− ∂L(x, v)

∂x
= FNSA(t, x, v), (4.2a)

dx

dt
− ∂H(x, p)

∂p
= 0,

dp

dt
+

∂H(x, p)

∂x
= FNSA(t, x, p), (4.2b)

with time evolution for an observable A(x, p) in phase space over R characterized by the
brackets

dA

dt
= (A,H, FNSA) =
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Figure 3: An illustration via sea shells growth of the third scientific unbalance of the 20-th
century, the lack of a structurally irreversible mathematics (that is, a mathematics whose ba-
sic axioms are not invariant under time reversal) for quantitative representations of irreversible
processes. The unbalance is due to the fact that all formulations used until now are of Hamilto-
nian type, while all known Hamiltonians and their background mathematics are reversible, thus
implying the study of irreversible systems via fully reversible formulations.

= (
∂A

∂xk
α

× ∂H

∂pkα

− ∂A

∂pkα

× ∂H

∂xk
α

) +
∂A

∂pkα

× FNSA
kα . (4.3)

Since all known Lagrangians and Hamiltonians are reversible in time, according to the
teaching of Lagrange and Hamilton, irreversibility is characterized, again, by the external
terms representing contact zero-range interactions among extended particles.

At the beginning of the 20-th century, Lagrange’s and Hamilton’s external terms were
truncated, resulting in analytic equations

d

dt

∂L(x, v)

∂v
− ∂L(x, v)

∂x
= 0, (4.4a)

dx

dt
− ∂H(x, p)

∂p
= 0,

dp

dt
+

∂H(x, p)

∂x
= 0, (4.4b)

with time evolution characterized by the familiar Lie brackets

dA

dt
= [A,H] =

=
∂A

∂xk
α

× ∂H

∂pkα

− ∂A

∂pkα

× ∂H

∂xk
α

, (4.5)

which are fully reversible.
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The above occurrence was due to the successes of the truncated analytic equations for
the representation of planetary and atomic structures, resulting in their use for virtually
all scientific inquiries of the 20-th century. In turn, the assumption of the truncated
analytic equations as the ultimate formulation of science implied the scientific unbalance
under consideration here because planetary and atomic structures are fully reversible,
thus lacking sufficient generalities for all of nature.

4.3: Catastrophic inconsistencies of formulations with external terms. More re-
cent studies (23,38) have shown that the true Lagrange’s and Hamilton’s equations (those
with external terms) cannot be used in applications due to a number of insufficiencies,
such as:

(1) the lack of invariant numerical predictions in accordance with Theorem 3.1 (due
to their evident noncanonical character);

(2) the lack of characterization of any algebra by the brackets of the time evolution,
let alone the loss of all Lie algebras, because brackets (A,H, FNSA) of Eqs. (4.3) violate
the right distributive and scalar laws as necessary to characterize an algebra commonly
understood in contemporary mathematics since they are triple systems);

(3) the lack of a topology suitable to represent contact nonpotential interactions among
extended particles since the topology of conventional Hamiltonian formulation is strictly
local-differential, thus solely characterizing point particles; and other limitations.

The only resolution of these problematic aspects known to this author was the con-
struction of the novel structurally irreversible mathematics indicated earlier. Stated in
different terms, the manifestly inconsistent reduction of irreversible macroscopic systems
to elementary particles in reversible conditions was due, again, to insufficiencies of the
used mathematics.

It should be noted that the isomathematics of the preceding section is also reversible
in time because the isounit is Hermitean, thus lacking the mathematical characteriza-
tion of time reversal, and confirming the need of constructing of a broader mathematics
specifically suited to represent irreversibility.

4.4: Initial versions of irreversible mathematics. The achievement of a structurally
irreversible mathematics resulted to be a long scientific journey due to the need of achiev-
ing invariance under irreversible conditions. The first studies can be traced back to Ref.
(8) of 1967 which presented the first known parametric deformation of Lie algebras with
product

(A,B) = p× A×B − q ×B × A =

= v × (A×B −B × A) + w × (A×B + B × A) =

= v × [A,B] + w × {A,B}, (4.6)

where p, q, and p ± q are non-null parameters, v = p + q, w = q − p, and A, B are
Hermitean matrices.
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The studies continued with the first known presentation in Ref. (38) of the operator
deformations of Lie algebra with product

(A,̂B) = A× P ×B −B ×Q× A =

= (A× T ×B −B × T × A) + (A×W ×B + B ×W × A) =

= [A,̂B] + {A,̂B}, T + W = P, W − T = Q, (4.7)

where P , Q and P ±Q are nowhere singular matrices.
On historical grounds, the above deformations were introduced in Refs. (8,38) as real-

izations of Albert’s Lie-admissible and Jordan-admissible products (7), namely, products
whose antisymmetric and symmetric parts are Lie and Jordan, respectively,

(A,̂B)− (B,̂B) = 2× [A,̂B] = Lie, (4.8a)

(A,̂B) + (B,̂A) = 2× (A,̂B) = Jordan. (4.8b)

Note, however, that the Lie and Jordan algebras attached to brackets (A,̂B) are not
conventional because of their broader isotopic nature [4].

The transition from the parameter to the operator deformations of Lie algebras was
mandatory because all time evolution which can be characterized by the former brackets
are nonunitary. Therefore, the reader can easily verify that the application of a nonunitary
transform to the parametric deformations leads to the operator ones,

i× dA/dt = (A,B), A(t) = U × A(0)× U †, U × U † 6= I, (4.9a)

U × (A,B)× U † = (A′̂,B′)′, (4.9b)

A′ = U × A× U †, B′ = U ×B × U†, (4.9c)

T = v × (U × U †)−1,W = w × (U × U †)−1. (4.9d)

Operator deformations (4.7) (rather than the parametric deformations (4.6)) are promis-
ing for the representation of irreversibility because they are no longer totally anti-symmetric
(as it is the case for Lie brackets) and, therefore, they can indeed represent nonconser-
vation as needed in irreversible processes. Moreover, operator deformations (4.7) are
universal in the sense of admitting as particular cases all infinitely possible algebras as
currently known in mathematics (those characterized by a bilinear product), including
Lie, Jordan, Kac-Moody, supersymmetric and all other possible algebras. Finally, the
joint Lie- and Jordan-admissibility is preserved by any additional nonunitary transforms,

Z × (A,̂B)× Z† = A′ × P ′ ×B′ −B′ ×Q′ × A′ = (A′̂,B̂)′, (4.10a)

Z × Z† 6= I, A′ = Z × A× Z†, B′ = Z ×B × Z† (4.10b)

P ′ = Z†−1 × P × Z−1, Q′ = Z†−1 ×Q× Z−1, (4.10b)

thus confirming that brackets (A,̂B) characterize the most general possible algebras.
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Nevertheless, all parametric and operator deformations are afflicted by the catastrophic
mathematical and physical inconsistencies of Theorem 3.1 because of the lack of invariance
of the deformation parameters P → P ′ 6= P, Q → Q′ 6= Q (or, equivalently, of the
product).

During the last two decades of the 20-th century, the physical and mathematical
literature saw an explosion of contributions in Lie deformations which continues to this
day, although generally without a quotation of their origination in Refs. (8,23,38), without
a quotation of their Lie- and Jordan-admissible content (7), and, above all, without a
quotation of the rather vast literature on their catastrophic inconsistencies (see, Refs.
(171-175) and memoir (46) and literature quoted therein). By contrast, by the mid 1980’s
this author had abandoned the study of Lie deformations according to their original
formulations (8,23,38) because of said catastrophic inconsistencies.

4.5: Elements of genomathematics. A breakthrough occurred with the discovery,
apparently done for the first time by R. M. Santilli in Ref. (12) of 1993, that the axioms
of a field also hold when the ordinary product of numbers a × b is ordered to the right,
a > b, or, separately, ordered to the left, a < b. In turn, such an order permitted the
construction of two generalized units, called genounits to the right and to the left

I = Diag.(1, 1, ..., 1) → Î>(t, x, v, ψ, ∂xψ, ...) = 1/T̂>(t, x, v, ψ, ∂xψ, ...) > 0, (4.11a)

I = Diag.(1, 1, ..., 1) →<> Î(t, x, v, ψ, ∂xψ, ...) = 1/<T̂ (t, x, v, ψ, ∂xψ, ...), (4.11b)

Î> = (<Î)†, (4.11c)

with corresponding ordered genoproducts to the right and to the left

A×B → A > B = A× T̂> ×B, (4.12a)

A×B →→ A < B = A×< T ×B, (4.12b)

A > B = (B < A)†, (4.12c)

under which the left and rights character of the genounits is preserved,

I × A = A× I = A → Î> > A = A > Î> = A, (4.13a)

I × A = A× I = A →< Î < A = A << Î = A, (4.13b).

for all (Hermitean elements A, B, of the considered set. Examples of genounits and
genoproducts will be provided shortly.

In this way, the ordering ”>” can describe motion forward in time while the ordering
”<” can describe motion backward in time, with interconnecting Hermitean (or trans-
posed) conjugation. This approach permitted the embedding of irreversibility in the most
fundamental quantities, the basic units and operations, thus assuring ab initio the con-
struction of a structurally irreversible mathematics, today known as genomathematics, as
summarized below.
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DEFINITION 4.1: Let F = F (a, +,×) be a field as per Definition 2.1. The forward
genofields (first introduced in Ref. (12) of 1993) are rings F̂> = F̂>(â>, +̂>, >) with
forward genonumbers

â> = a× Î>, (4.14)

associative, distributive and commutative forward genosum

â>+̂>b̂> = (a + b)× Î> = ĉ> ∈ F̂>, (4.15)

associative and distributive forward genoproduct

â> > b̂> = â > ×T̂> × b̂> = ĉ> ∈ F̂ , (4.16)

additive forward genounit

0̂> = 0, â>+̂>0̂> = 0̂>+̂>â> = â> ∈ F̂>, (4.17)

and multiplicative forward genounit

Î> = 1/T̂>, â> > Î> = Î> > â> = â> ∈ F̂>,∀â>, b̂> ∈ F̂>, (4.18)

where Î> is a complex-valued non-Hermitean, or real-value non-symmetric, everywhere
invertible quantity generally outside F. The backward genofields <F̂ (<â,< +̂, <), their el-
ements, units and their operations are given by the Hermitean conjugate (or transposed)

of the corresponding quantities and their operations in F̂>(â>, +̂>, ×̂>
), e.g.,

<Î = (Î>)†, etc. (4.19)

LEMMA 4.1: Forward and backward genofields are fields with characteristic zero
(namely, they verify all axioms of said fields).

In Sect. 2 we pointed out that the conventional product ”2 multiplied by 3” is not
necessarily equal to 6 because, depending on the assumed unit and related product, it
can be −6. In Section 3 we pointed out that the same product ”2 multiplied by 3” is
not necessarily equal to +6 or −6, because it can also be equal to an arbitrary number,
or a matrix or an an integrodifferential operator. In this section we point out that ”2
multiplied by 3” can be ordered to the right or to the left, and yield different numerical
results for different orderings, ”2 > 3 6= 2 < 3, all this by continuing to verify the axioms
of a field per each order (12).

Once the forward and backward fields have been identified, the various branches of
genomathematics can be constructed via simple compatibility arguments, resulting in the
genofunctional analysis, genodifferential calculus, etc (14,54,55). We have in this way the
genodifferentials and genoderivatives

d̂>x = T̂>
x × dx,

∂̂>

∂̂>x
= Î>

x ×
∂

∂x
, etc. (4.20)
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Particularly intriguing are the genogeometries (loc. cit.) because they admit nonsym-
metric metrics, such as the genoriemannian metrics

g>(x) = T̂>(x)× η, (4.21)

where η is the Minkowski metric and T̂>(x) is a real-values, nowhere singular, 4 × 4
nonsymmetric matrix, while bypassing known inconsistencies since they are referred to
the nonsymmetric genounit

Î> = 1/T̂>. (4.22)

In this way, genogeometries are structurally irreversible and actually represent irreversibil-
ity with their most central geometric notion, the metric.

4.6: Lie-Santilli genotheory and its isodual. Particularly important for this note
is the lifting of Lie’s theory permitted by genomathematics, first identified by R. M.
Santilli in Ref. (23) of 1978, and today knows as the Lie-Santilli genotheory [7,8], which
is characterized by:

(1) The forward and backward universal enveloping genoassociative algebra ξ̂>,< ξ̂, with
infinite-dimensional basis characterizing thePoincaré-Birkhoff-Witt-Santilli genotheorem

ξ̂> : Î , X̂i, X̂i > X̂j, X̂i > X̂j > X̂k, ..., i ≤ j ≤ k, (4.23a)

<ξ̂ : Î , X̂i, X̂i < X̂j, X̂i < X̂j < X̂k, ..., i ≤ j ≤ k; (4.23b)

where the ”hat” on the generators denotes their formulation on genospaces over genofields
and their Hermiticity implies that X̂> =< X̂ = X̂;

(2) The Lie-Santilli genoalgebras characterized by the universal, jointly Lie-and Jordan-
admissible brackets (4.7),

<L̂> : (X̂î,X̂j) = X̂i < X̂j − X̂j > X̂i = Ĉk
ij×̂X̂k, (4.24)

although now formulated in an invariant form (see below);
(3) The Lie-Santilli genotransformation groups

<Ĝ> : Â(ŵ) = (êî×̂X̂×̂ŵ
> ) > Â(0̂) < (<ê−î×̂ŵ×̂X̂) =

= (ei×X̂×T̂ >×w)× A(0)× (e−i×w×<T̂×X̂), (4.25)

where ŵ> ∈ R̂> are the genoparameters; the genorepresentation theory, etc.
The mathematical implications of the Lie-Santilli genotheory are significant because

of the admission as particular cases of all possible algebras, as well as because, when
computed on the genobimodule <ξ̂× ξ̂> Lie-admissible algebras verify all Lie axioms, while
deviations from Lie algebras emerge only in their projection on the bimodule <ξ × ξ> of
the conventional Lie theory. This is due to the fact that the computation of the left action
A < B = A ×< T̂ × B on <ξ̂ (that is, with respect to the genounit <Î = 1/<T̂ ) yields
the save value as the computation of the conventional product A×B on <ξ (that is, with
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respect to the trivial unit I), and the same occurs for the value of A > B on ξ̂>. In this
way, thanks to genomathematics, Lie algebras acquire a towering significance in view of
the possibility of reducing all known algebras to primitive Lie axioms.

The physical implications of the Lie-Santilli genotheory ar equally significant. In fact,
Noether’s theorem on the reduction of conservation laws to primitive Lie symmetries
can be generalized to the reduction of, this time, nonconservation laws to primitive Lie-
Santilli genosymmetries. As a matter of fact, this reduction was the very first motivation
that suggested the construction of the genotheory in memoir (23) (see also monographs
(49,50)). The reader can then foresee similar liftings of all remaining physical aspects
treated via Lie algebras.

The construction of the isodual Lie-Santilli;i genotheory is an instructive exercise for
readers interested in learning the new methods.

The physical theories characterized by genomathematics can be summarized as follows.

4.7: Geno-Newtonian Mechanics and its isodual. Recall that, for the case of iso-
topies, the basic Newtonian systems are given by those admitting nonconservative internal
forces restricted by certain constraints which verify total conservation laws (closed non-
Hamiltonian systems). For the case of the genotopies under consideration here, the basic
Newtonian systems are the conventional nonconservative systems (4.1) without subsidiary
constraints (open non-Hamiltonian systems). In this case irreversibility is characterized
by nonselfadjoint forces, as indicated earlier.

The forward geno-Newtonian mechanics and its isodual is a generalization of Newto-
nian mechanics for the description of motion forward in time of the latter systems via
a structurally irreversible mathematics. The new mechanics is characterized by (14):
the forward genotime t̂> = t × Î>

t with (nowhere singular and non-Hermitean) forward
time genounit Î>

t = 1/T̂>
t 6= Î>†

t , related forward time genospace Ŝ>
t over the forward

time genofield R̂>
t ; the forward genocoordinates x̂> = x × Î>

x with (nowhere singular
non-Hermitean) forward coordinate genounit Î>

x = 1/T̂>
x 6= Î>†

x with forward coordinate
genospace Ŝ>

x and related forward coordinate genofield R̂>
x ; and the forward genospeeds

v̂> = d̂>x̂>/d̂>t̂> with (nowhere singular and non-Hermitean) forward speed genounit
Î>
v = 1/T̂>

v 6= Î>†
v with related forward speed genospace Ŝ>

x and forward speed genofield
R̂>

v . Note that, to verify the condition of non-Hermiticity, the time genounits should be
at least complex valued, and the same then occurs for the other genounits.

The representation space is then given by the Kronecker product

Ŝ>
Tot = Ŝ>

t × Ŝ>
x × Ŝ>

v , (4.26)

defined over the genofield
R̂>

tot = R̂>
t × R̂>

x × R̂>
v , (4.27)

with total genounit
Î>
tot = Î>

t × hatI>
x × Î>

v . (4.28)

The basic equations are given by the forward geno-Newton equations, also known
as Newton-Santilli genoequations, first proposed in memoir (14) via the genodifferential
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calculus, also known as forward Newton-Santilli genoequations [8-11]

m̂> >α
d̂>v̂>

kα

d̂>t̂>
= − ∂̂>V̂ >

∂̂>x̂>k
α

. (4.29)

The backward geno-Newton equations is characterized by backward genounits can be ob-
tained via transpose conjugation of the forward formulation.

As one can see, the representation of Newton’s equations is done in a way similar to
the isotopic case, the main difference being that the basic unit is now no longer symmetric.
Note that in Newton’s equations the nonpotential forces are part of the applied force F,
while in the geno-Newton equations nonpotential forces are represented by the forward
genounits, or, equivalently, by the forward genodifferential calculus, in a way essentially
similar to the case of isotopies. The main difference is that isounits are Hermitean, thus
implying the equivalence of forward and backward motions, while genounits are non-
Hermitean, thus implying irreversibility.

Note also that the topology underlying Newton’s equations is the conventional, Eu-
clidean, local-differential topology which, as such, can only represent point particles.
By contrast, the topology underlying the geno-Newton equations is the Santilli-Sourlas-
Tsagas genotopology (14,139) for the representation of extended, nonspherical and de-
formable particles via forward genounits, e.g., of the diagonal type

Î> = Diag.(n2
1, n

2
2, n

2
3, n

2
4)× Γ>(t, x, v, ...), (4.30)

where n2
k, k = 1, 2, 3 represents the semiaxes of an ellipsoid, n2

4 represents the density
of the medium in which motion occurs (with more general nondiagonal realizations here
omitted for simplicity), and Γ> represents contact interactions occurring for the motion
forward in time.

The construction of the isodual image of the above geno-Newtonian mechanics is
instructive to understand the difference between isoduality and motion backward in time.

4.8: Geno-Hamiltonian mechanics and its isodual. The most effective setting to
introduce real-valued and non-Hermitean (thus non-symmetric) genounits is in the 6n-
dimensional forward genocotangent bundle (geno-phase-space) with local genocoordinates
and their conjugate

â>µ = aρ × Î>µ
1ρ , (â>µ) =

(
x̂>k

α

p̂>
kα

)
, R̂>

µ = Rρ × Î>ρ
2µ , (R̂>

µ ) = (p̂kα, 0̂), (4.31a),

Î>
1 = 1/T̂>

1 = (Î>
2 )T = (1/T̂>

2 )T , k = 1, 2, 3, α = 1, 2, ..., n, µ, ρ = 1, 2, ...6n, (4.31a)

where the superscript T stands for transposed, with nowhere singular, real-valued and
non-symmetric genometric and related invariant

δ̂> = δ6n×6n × T̂>
1 6n×6n, (4.32a)

â>µ > R̂>
µ = â>ρ × T̂>β

1ρ × R̂>
β = aρ × Î>β

2ρ ×Rβ. (4.32b)
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In this case we have the following genoactionprinciple (14)

δ̂>Â> = δ̂>
∫̂ >

[R̂>
µ >a d̂>â> − Ĥ> >t d̂>t̂>] =

= δ
∫

[Rµ × T̂>µ
1ν (t, x, p, ...)× d(aβ × Î>ν

1β )−H × dt] = 0, (4.33)

where the second expression is the projection on conventional spaces over conventional
fields and we have assumed for simplicity that the time genounit is 1.

It is easy to prove that the above genoprinciple characterizes the following forward
geno-Hamilton equations, also called forward Hamilton-Santilli genoequations (originally
proposed in Ref. (23) of 1978 with conventional mathematics and in ref. (14) of 1996
with genomathematics; see also Refs. (28,51,52,55))

ω̂µν×̂ d̂âν

d̂t̂
− ∂̂Ĥ(â)

∂̂âµ
=

=

(
0 −1
1 0

)
×

(
dx/dt
dp/dt

)
−

(
1 K
0 1

)
×

(
∂H/∂x
∂H/∂p

)
= 0, (4.34a)

ω̂ = (
∂̂Rν

∂̂âµ
− ∂̂R̂µ

∂̂âν
)× Î =

(
0 −1
1 0

)
× Î , (4.34b)

K = FNSA/(∂H/∂p). (4.34c)

The time evolution of a quantity Â>(â>) on the forward geno-phase-space can be
written in terms of the following brackets

dÂ>

dt
= (Â>, Ĥ>) =

∂̂>Â>

∂̂>â>µ
×̂ω̂µν×̂ ∂̂>Ĥ>

∂̂â>ν
=

=
∂Â>

∂â>µ
× S µν × artoa; Ĥ>

∂â>ν
=

= (
∂Â>

∂x̂>k
α

× ∂Ĥ>

∂p̂>
kα

− ∂Â>

∂p̂>
kα

× ∂Ĥ>

∂x̂>k
α

) +
∂Â>

∂p̂>
kα

×Kk
k ×

∂Ĥ>

∂p̂>
kα

. (4.35a)

S>µν = ωµρ × Î2ν
ρ , ωµν = (||ωαβ||−1)µν , (4.35b)

where ωµν is the conventional Lie tensor and, consequently, Sµν is Lie-admissible in the
sense of Albert (7).

As one can see, the important consequence of genomathematics and its genodifferential
calculus is that of turning the triple system (A,H, FNSA) of Eqs. (4.3) in the bilinear
form (A,̂B) of brackets (4.35a),m thus regaining the existence of a consistent algebra in
the brackets of the time evolution, for which central purpose genomathematics was built
(since the multiplicative factors represented by K are fixed for each given system). The
invariance of such a formulation will be proved shortly.
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It is easy to verify that the above identical reformulation of Hamilton’s historical
time evolution (4.3) correctly recovers the time rate of variations of physical quantities in
general, and that of the energy in particular,

dA

dt
= [Â>, Ĥ>] +

∂Â>

∂p̂>
kα

× FNSA
kα . (4.36a)

dH

dt
= [Ĥ>, Ĥ>] +

∂Ĥ>

∂p̂>
kα

× FNSA
kα = vk

α × FNSA
kα . (4.36b)

It is easy to show that genoaction principle (4.33) characterizes the following Hamilton-
Jacobi-Santilli genoequations

∂̂>A>

∂̂>t̂>
+ Ĥ> = 0, (4.37a)

(
∂̂>A>

∂̂>â>µ
) = (

∂̂>A>

∂̂>x>k
α

,
∂̂>A>

∂̂>p>
kα

) = (R̂>
µ ) = (p̂>

kα, 0̂), (4.37b)

which confirm the property (crucial for genoquantization as shown below) that the genoac-
tion is indeed independent of the linear momentum.

Note the direct universality of Eqs. (4.33) for the representation of all infinitely possible
Newton equations (4.1) (universality) directly in the fixed frame of the experimenter
(direct universality). Note also that, at the abstract, realization-free level, Geno-Hamilton
equations (4.34) coincide with Hamilton’s equations without external terms, yet represent
those with external terms. The latter are reformulated via genomathematics as the only
known way to achieve invariance while admitting a consistent algebra in the brackets of
the time evolution (38). Therefore, genohamilton equations (4.34) are indeed irreversible
for all possible reversible Hamiltonians, as desired. The origin of irreversibility rests in
the contact nonpotential forces according to Lagrange’s and Hamilton’s teaching. Note
finally that the extension of Eqs. (4.9) to include nontrivial genotimes implies a major
broadening of the theory we cannot review for brevity (14,55).

The above geno-Hamiltonian mechanics requires, for completness, three additional
formulations, the backward geno-Hamiltonian mechanics for the description of matter
moving backward in time, and the isoduals of both the forward and backward mechanics
for the description of antimatter. The construction of these additional mechanics is lefty
to the interested reader.

4.9: Genotopic Branch of Hadronic Mechanics and its isodual. A simple genotopy
of the naive or symplectic quantization applied to Eqs. (4.37) yields the genotopic branch
of hadronic mechanics defined on the forward genotopic Hilbert space Ĥ> with forward
genoinner product < ψ̂| > |ψ̂ > ×Î> ∈ Ĉ>. The resulting genotopy of quantum mechanics
is characterized by the forward geno-Schroedinger equations (first formulated in Refs.
(42,179) via conventional mathematics and in Ref. (14) via genomathematics)

î> >
∂̂>

∂̂>t̂>
|ψ̂> >= Ĥ> > |ψ̂> >=
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= Ĥ(x̂, v̂)× T̂>(t̂>, x̂>, p̂>, ψ̂>, ∂̂>ψ̂>....)× |ψ̂> >= E> > |ψ> >, (4.38a)

p̂>
k ×̂|ψ̂> >= −î> > ∂̂>

k |ψ̂> >= −i× Î>i
k × ∂i|ψ̂> >,

Î> > |ψ̂> >= |ψ̂> >, (4.38b)

with conjugate backward equations obtained via Hermitean conjugation.
Note the crucial independence of isoaction Â> in principle (4.33) from the linear mo-

mentum, as expressed by the Hamilton-Jacobi-Santilli genoequations (4.37). In fact, such
independence assures that genoquantization yields a genowavefunction solely dependent
on time and coordinates, ψ̂> = ψ̂>(t, x). Other geno-Hamiltonian mechanics do not verify
such a condition, thus implying genowavefunctions with an explicit dependence also on
linear momenta, ψ̂> = ψ̂>(t, x, p) which violate the abstract identity of quantum and
hadronic mechanics andwhose treatment in any case is beyond our operator knowledge at
this writing.

The complementary geno-Heisenberg equations are given by in their finite and infinites-
imal forms (first formulated in Ref. (38) via conventional mathematics and in Ref. (14)
via genomathematics)

Â(t̂) = (êî×̂Ĥ×̂t̂
> ) > Â(0̂) < (<ê−î×̂t̂×̂Ĥ) =

= (ei×Ĥ×T̂ >×t)× A(0)× (e−i×t×<T̂×Ĥ), (4.39a)

î×̂ d̂Â

d̂t̂
= (Â,̂Ĥ) = Â < Ĥ − Ĥ > Â =

= Â×< T̂ (t̂, x̂, p̂, ψ̂, ....)× Ĥ − Ĥ × T̂>(t̂, x̂, p̂, ψ̂, ....)× Â, (4.39b)

(x̂i ,̂p̂j) = i× δi
j × Î>, (x̂i ,̂x̂j) = (p̂î,p̂j) = 0, (4.39c)

where time has no arrow, since Heisenberg’s equations are computed at a fixed time.
The genoexpectation values of an observable for the forward motion Â> are then given

by
< ψ̂| > Â> > |ψ̂ >

< ψ̂| > |ψ̂ >
× Î> ∈ Ĉ> (4.40)

In particular, the genoexpectation values of the genounit recover the conventional Planck’s
unit,

< ψ̂| > Î> > |ψ̂ >

< ψ̂| > |ψ̂ >
= I, (4.41)

thus confirming that the genotopies are ”hidden” in the abstract axioms of quantum
mechanics much along the celebrated Einstein-Podolsky-Rosen argument.

Note that geno-Hermiticity coincides with conventional Hermiticity. As a result, all
quantities which are observable for quantum mechanics remain observable for the above
formulation. However, unlike quantum mechanics, physical quantities are generally non-
conserved, as it must be the case for the energy,

î> >
d̂>Ĥ>

d̂>t̂>
= Ĥ × (<T̂ − T̂>)× Ĥ. (4.42).
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Therefore, the genotopic branch of hadronic mechanics is the only known formulation
permitting nonconserved quantities to be Hermitean, thus being observability. In fact, since
they are Hamiltonian, other formulation attempt to represent nonconservation, e.g., by
adding an ”imaginary potential” to the Hamiltonian. In this case the Hamiltonian is non-
Hermitean and, consequently, the nonconservation of the energy cannot be an observable.
besides, said ”nonconservative models” with non-Hermitean Hamiltonians are nonunitary
and are formulated on conventional spaces over conventional fields, thus suffering all the
catastrophic inconsistencies of Theorem 3.1. For additional aspects of genomechanics
interested readers may consult Refs. [2,5].

4.10: Invariance of genotheories. Recall that a fundamental Axiomatic feature of
quantum mechanics is the invariance under its time evolution of numerical predictsions
and physical law, which invariance is due to the unitary structure of the theory. However,
quantum mechanics is reversible and can only represent conventional conservation laws.

As indicated earlier, the representation of irreversibility and nonconservation require
the use of nonunitary time evolutions which, however, are afflicted by the catastrophic
inconsistencies of Theorem 3.1.

The only resolution of such a basic impasse known to this author has been the achieve-
ment of invariance under nonunitarity and irreversibility via the use of genomathematics,
provided that such genomathematics is applied to the totality of the formalism to avoid
evident inconsistencies caused by mixing different mathematics for the selected physical
problem.

Such an invariance was first achieved by R. M. Santilli in Ref. (44) of 1997 can be
illustrated by reformulating any given nonunitary transform in the genounitary form

U = Û × T̂>1/2,W = Ŵ × T̂>1/2, (4.43a)

U ×W † = Û > Ŵ † = Ŵ † > Û = Î> = 1/T̂>, (4.43b)

and then showing that genounits, genoproducts, genoexponentiations, etc., are indeed
invariant under the above genounitary transform in exactly the same way as conventional
unit, products, exponentiations, etc. are invariant under unitary transforms,

Î> → Î>
′
= Û > Î> > Ŵ † = Î>, (4.44a)

Â > B̂ → Û > (A > B) > Ŵ † =

= (Û × T̂> × A× T> × Ŵ †)× (T̂> ×W †)−1 × T̂>×
×(Û × T̂>)−1 × (Û × T> × Â× T> × Ŵ>) =

= Â′ × (Û × T̂> × Ŵ †)−1 × B̂ = Â′ × T̂> ×B′ = Â′ > B̂′, etc. (4.44b)

from which all remaining invariances follow, thus resolving the catastrophic inconsistencies
of Theorem 3.1.

Note the numerical invariance of the genounit Î> → Î>
′

= Î>, of the genotopic

element T̂> → T̂>
′
= T̂>, and of the genoproduct >→>′=> which are necessary to have

invariant numerical predictions.
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4.11: Simple construction of genotheories. As it was the case for the isotopies, a
simple method has been identified in Ref. (44) for the construction of genotheories from
any given conventional, classical or quantum formulation. It consists in identifying such
genounits as the product of two different nonunitary transforms

U × U † 6= 1,W ×W † 6= 1, U ×W † = Î>,W × U † =< Î = (Î>)†, (4.45)

and subjecting the totality of quantities and their operations of conventional models to
said dual transforms,

I → Î> = U × I ×W †, I →< Î = W × I × U †, (4.46a)

a → â> = U × a×W † = a× Î>, a →< â = W × a× U † =< Î × a, (4.46b)

a×b → â> > b̂> = U×(a×b)×W> = (U×a×W †)×(U×W †)−1×(U×b×W †), (4.46c)

∂/∂x → ∂̂>/∂̂>x̂> = U × (∂/∂x)×W † = Î> × (∂/∂x), (4.46d)

< ψ| × |ψ >→<< ψ| > |ψ> >= U × (< ψ| × |ψ >)×W †, (4.46e)

H × |ψ >→ Ĥ> > |ψ> >= (U ×H ×W †)× (U ×W †)−1 × (U × ψ >), etc. (4.46f)

As a result, any given conventional, classical or quantum model can be easily lifted into
the above genotopic form.

Note that the above construction implies that all conventional physical quantities
acquire a well defined direction of time. For instance, the correct genotopic formulation
of energy, linear momentum, etc., is given by

Ĥ> = U ×H ×W †, p̂> = U × p×W>, etc., (4.47)

and this explains the reason for having represented in this section energy, momentum and
other quantities with their arrow of time >. Such an arrow can indeed be omitted for
notational simplicity, but only after the understanding of its existence.

4.12: Genorelativity. Another important implication of genomathematics is the con-
struction of yet another lifting of special relativity, this time intended for the invariant
characterization of irreversible classical and quantum processes, today known as genorela-
tivity. This new relativity is characterized by the genotopies of: the background Euclidean
topology (14); the Minkowski space (15); the Poincaré symmetry (29); the physical laws;
etc. The geno-Galilean case is treated in monographs (52,53) which appeared prior to the
advent of the genodifferential calculus(14). The relativistic case is oulined in Rdf. (29).

Regrettably, we cannot review genorelativity in details to avoid a prohibitive length.
For the limited scope of this presentation it is sufficient to indicate that genospecial rel-
ativity can be constructed either from the isospecial relativity indicated in the preceding
section via the lifting of the isounits into nonsymmetric forms, or by subjecting conven-
tional special relativity to the dual noncanonical or nonunitary transform,ms as in Eqs.
(4.45) and (4.46).
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4.13: Experimental verifications and applications. The experimental validity of
genotheories in classical mechanics is established by the direct representation of all non-
conservative and irreversible Newtonian systems by Geno-Hamilton equations via a simple
algebraic calculation of the term K in Eqs. (4.34c).

The experimental validity of genotheories in particle physics is established by the fact
that all dissipative nuclear models represented via imaginary potentials in the Hamiltonian
and other nonunitary theories can be identically reformulated in terms of the genotopic
branch of hadronic mechanics, while preserving the representation of experimental data
identically.

Above all, genomathematics and its related formulations have indeed achieve the ob-
jective for which they were built, namely, an invariant representation of irreversibility at
all levels, from Newton to quantum mechanics. Such an objective can be achieved via the
following main rules:

(i) Identify the classical origin of irreversibility in the contact nonpotential forces
among extended particles, much along the historical teaching of Newton (1), Lagrange
(2) and Hamilton (3);

(ii) Represent said nonpotential forces via real-valued, nowhere singular, non-symmetric
genounits and construct a mathematics which is structurally irreversible for all reversible
Hamiltonians in the sense indicated earlier;

(iii) Achieve identical reformulation (4,34) of Hamilton’s equations with external terms
with a consistent algebra in the brackets of the time evolution of Lie-admissible type
according to Albert (7);

(iv) Complement the latter mechanics with the underlying genosymplectic geometry,
permitting the mapping of the classical formulations into operator formulations preserving
said Lie-admissible character; and

(v) Identify the origin of irreversibility in the most elementary layers of nature, such
as elementary particles in their irreversible motion in the interior of stars.

Note that a requirement for the above rules is the nonconservation of the energy and
other physical quantities, which is readily verified by the geno-Hamilton equations (4.34)
due to the lack of anti-symmetric character of brackets (A,B) of the time evolution.

An important application of genomechanics has been done by J. Ellis et al. (122)
who have shown that its Lie-admissibility provides an axiomatically consistent, direct
representation of irrebersibility in interior quasares structures.

In closing, it is hoped that Lagrange’s and Hamilton’s legacy of representing irre-
versibility with the external terms in their analytic equations is seriously considered
because it implies covering theories with momentous advances in mathematics and all
quantitative sciences.
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5. CONSTRUCTION OF HYPERMECHANICS FROM BIO-
LOGICAL SYSTEMS

5.1: The scientific unbalance caused by biological systems. In this author’s
opinion, by far the biggest scientific unbalance of the 20-th century has been the treatment
of biological systems (herein denoting DNA, cells, organisms, etc.) via the mathematics
developed for inanimate matter.

The unbalance is due to the fact that conventional mathematics and related formula-
tions, such as quantum mechanics, are inapplicable for the treatment of biological systems
for various reasons. To begin, biological events, such as the growth of an organism, are
irreversible. Therefore, any treatment of biological systems via conventional reversible
mathematics and related physical formulations cannot pass the test of time. Quantum
mechanics is ideally suited for the treatment of the structure of the Hydrogen atom or of
crystals. These systems are represented by quantum mechanics as being ageless. Recall
also that quantum mechanics is unable to treat deformations because of incompatibilities
with basic formulations, such as the group of rotations. Therefore, the rigorous applica-
tion of quantum mechanics to biological structures implies that all organisms from cells
to humans are perfectly rigid and eternal.

5.2: The multivalued complexity of biological systems. Even after achieving
the invariant formulation of irreversibility outlined in the preceding section, it was easy
to see that the underlying genomathematics remains insufficient for in depth studies of
biological systems. Recent studies conducted by C. R. Illert (56) have pointed out that
the shape of sea shells can certainly be represented via conventional mathematics, such
as the Euclidean geometry. However, the latter is inapplicable for a representation of the
growth in time of sea shells. Computer simulations have shown that the imposition to sea
shell growth of conventional geometric axioms (e.g., those of the Euclidean or Riemannian
geometries) implies the lack of proper growth, as expected because said geometries are
strictly reversible, while the growth of sea shells is strictly irreversible.

The same studies by C. R. Illert (loc. cit.) have indicated the need of a mathematics
which is not only structurally irreversible, but also multi-dimensional. As an example,
C. R. Illert achieved a satisfactory representation of sea shells via the doubling of the
Euclidean reference axes, namely, a geometry which appears to be six-dimensional.

A basic problem in accepting such a view is the lack of compatibility with our sensory
perception. In fact, when holding sea shells in our hands, we can fully perceive their
shape as well as their growth with our three Eustachian tubes. In particular, our senses
are sufficiently sensitive to perceive deviations from the Euclidean space, as well as for
the possible presence of curvature.

These occurrences pose a rather challenging problem, the achievement of a represen-
tation of the complexity of biological systems via the most general possible mathematics
which is: (1) is structurally irreversible (as in the preceding section); (2) admits the de-
formation theory; (3) is invariant under the time evolution; (4) is multi-dimensional; and,
last but not least, (5) is compatible with our sensory perception.
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Figure 4: An illustration of the fourth scientific unbalance of the 20-th century, the representa-
tion of biological structures (including cells, organisms and their functions) via a mathematics
which is not only Hamiltonian and reversible, but also single valued, while said biological systems
require a mathematics which is not only nonhamiltonian and irreversible, but also multi-valued,
as illustrated by the growth of a sea shell which, besides not being representable with a Hamil-
tonian and being irreversible, requires the doubling of all Euclidean reference axes.

A search in the mathematical literature revealed that a mathematics verifying all the
above five requirements did not exist and had to be constructed from the main features of
biological systems. As an example, hyperstructures in their current formulations (see Ref.
(96) lack a well defined left and right generalized unit even under their weak equalities,
they are not structurally irreversible, and lack invariance, thus not being suitable for
applications in biology.

5.3: Elements of hypermathematics. After numerous trials and errors, a yet broader
mathematics verifying the above five conditions was identified by R. M. Santilli in Ref.
(14) (see also Refs. (13,47) monograph (57)); it is today known under the name of
hypermathematics; and it is characterized by the following hyperunits here expressed for
the lifting of the Euclidean unit

I = Diag.(1, 1, 1) → Î>(t, x, v, ψ, ∂xψ, ...) = Diag.(Î>
1 , Î>

2 , Î>
3 ) =

= Diag.[(Î>
11, Î

>
12, ..., Î

>
1m), (Î>

21, Î
>
22, ..., Î

>
2m), (Î>

31, Î
>
32, ..., Î

>
3m)] = 1/T̂>,

I = Diag.(1, 1, ..., 1) →< Î(t, x, v, ψ, ∂xψ, ...) = Diag.(<Î1,
< Î2,

< Î3) =

= Diag.[(<Î11,
< Î12, ...,

< Î1m), (<Î21,
< Î22, ...,

< Î2m),< (Î31,
< Î32, ...,

< Î3m)] = 1/<T̂ ,

Î> = (<Î)†, (5.1)
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with corresponding ordered hyperproducts to the right and to the left as in Eqs. (4.3) and
identifies as in Eqs. (4.4) expressed in terms of ordinary equalities and operations. A
further broadening is then permitted by weak operations.

As one can see, the above mathematics is not 3m-dimensional, but rather it is 3-
dimensional and m-multi-valued. Such a feature permits the increase of the reference
axes, e.g., for m = 2 we have the six axes used by C. R. Illert (loc cit.), while achieving
compatibility with our sensory perception because at the abstract, realization-free level
the hypermathematics characterized by hyperunit (5.1) is indeed 3-dimensional.

The various branches of hypermathematics (hypernumbers, hyperspaces, hyperalge-
bras, etc.) can be constructed via mere compatibility arguments with hyperunit (5.1) (see
monograph (57) for brevity. The isodual hypermathematics can be constructed via the
use of map (2.4).

A main difference of hypermathematics with the preceding formulations is that in
the latter the product of two numbers is indeed generalized but single-valued, e.g., 2 >
3 = 346.765. By comparison, in hypermathematics the product of two numbers yields,
by conception, a set of values, e.g., 2 > 3 = (12.678, 341.329, 891.556, ...). Such a feature
appears to be necessary for the representation of biological systems because the association
of two atoms in a DNA (mathematically representable with the hypermultiplication) can
yeld a large variety of different organs. This feature serves to indicate that the biological
world has a complexity simply beyond our imagination at this time, and that the study
of biological problems, such as understanding the DNA code via numbers dating back to
biblical times, is manifestly insufficient.

An important application of hyperformulations has already been indicated in Section
3.14, the achievement of compatibility between structure models of hadrons with ordinayr
massive particles as constituents in mutated conditions, and the SU(3)-color models of
classification, which compatibility is permitted by the assumption that quarks are com-
posite, thus admitting an hyperstructure with mutivalued hyperunits.

5.4: The complexity of hypertime and hyperrelativity for biological systems.
The reader should be aware that the complexity of biological structures requires the
use of hypermathematics as well as its isodual, e.g., for quantitative interpretations of
bifurcations. In fact, a quantitative interpretation of bifurcations, e.g., in sea shells,
requires four different hypertimes and their isoduals, as indicated below.

In turn, this is sufficient to illustrate the departure from conventional notions of a
relativity suitable for quantitative studies on biological systems, known as hyperrelativity
and its isodual (57). In fact, such new relativity requires the most general notion of
numbers, those with a multi-valued hyperunits characterized by an ordered, yet unlimited
number of non-Hermitean elements, with consequential most general possible geometries
and mechanics, plus their isoduals. This results in an ordered, yet unlimited variety
of spaces and their isoduals all coexisting in our three-dimensional Euclidean space, plus
corresponding, equally co-existing varieties of time. There is little doubt that such features
imply dramatic departures from the simplicity, thus insufficiency, of special relativity.

An illustration of the complexity of hyperformulations and corresponding hyperrelativ-
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ity is given by the four different notions of hypertime which are needed for the description
of complex biological processes, such as bifurcations in seashells, all in a coexisting form
and each having a multi-valued character: motion forward in future time t̂>; motion
backward in past time <t̂; motion forward from past time <t̂d; and motion backward from
future time t̂>d. The necessity of these four directions in time also illustrates the need of
the isodual map.

5.5: Eric Trell’s hyperbiological structures. A new conception of biological systems,
which constitute a truly fundamental advance over rather simple prior conceptions, has
been recently proposed by Erik Trell (see Ref. (164) and contributions quoted therein).
It is based on representative blocks which appear in our space to be next to each other,
thus forming a cell or an organism, while having in reality hypercorrelations, thus having
the structure of hypernumbers, hypermathematics and hyperrelativity, with consequential
descriptive capacities immensely beyond those of pre-existing, generally single-valued and
reversible biological models. Regrettably, we cannot review Trell’s new hyperbiological
model to avoid an excessive length, and refer interested readers to the original literature
(164).

SUMMARY

Mathematics Isodual mathematics

Isomathematics Isodual isomathematics

Genomathematics Isodual genomathematics

Hypermathematics Isodual hypermathematics

??? Isodual ???

Figure 5: A schematic view of the main advances outlined in this memoir, from which all ap-
plications uniquely follow, a progressive generalization of ”mathematics” (here referred to the
conventional formulation with left and right multiplicative unit defined over a field of characteris-
tic zero) for the description of matter in conditions of increasing complexity and methodological
needs, and their anti-isomorphic isoduals for corresponding progressive descriptions of antimat-
ter. The last line illustrates the lack of final character of mathematics and, therefore, of scientific
theories.

5.6: The lack of final character of all scientific theories. Main works of art, such as
Michelangelo’s Pietá, remain unsurpassed with the passing of time. By comparison, sci-
entific theories, including mathematics, have a limited value in time, because, no matter
how advanced and valid a given formulation may appear to be, the discovery of its struc-
tural generalizations is only a matter of time. Such a fate also holds for all generalized
formulations outline in this memoir. In fact, the further broadening of hyperrelativity via
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the so-called weak operations is already within mathematical reach (13), the only missing
elements being future discoveries sufficient to motivate their use.
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