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Abstract

Recently, Santilli presented the formalism of Lie-isotopic lifting of
the Lorentz group associated with a generalized interval of the form

x ∗ x = x1b2
1x

1 + x2b2
2x

2 + x3b3
1x

3 + x4c2x4

where b, c = b, c(t, x, V, ...). Rectricting b and c to be dependent on
the velocity V (Finsler space), we apply the formalism to describe the
anomalous energy dependence of the meson lifetimes and some of the
fundamental parameters of the K0-K̄0 system.
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1 Introduction

In a recent series of papers[1, 2, 3] Santilli put forward a general method,
and its various applications, for constructing isotopic generalizations of Lie’s
theory. In particular, as to Lie-isotopic generalization on metric spaces[2],
the following isotopic generalization of the Minkowski interval was studied
in detail[1]:

x ∗ x = x1b2
1x

1 + x2b2
2x

2 + x3b3
1x

3 + x4c2x4, (1)

where b, c = b, c(t, x, V, ...). The method provides the form invariance of all
possible new metrics (which are considered to be isotopes of the Euclidean
one), and is based on a natural generalization of the original Lie symme-
try, namely, of Lie algebra, Lie group, enveloping algebra, composition law,
etc.[2]. From a geometrical viewpoint, one of the remarkable features of
the isotopy is that it provides the universal description of isometries de-
spite the rather different character of the metrics introduced. So, returning
to the space-time interval (1), one can specify the metric to the Finslerian
case[4, 5, 6], restricting b and c to be dependent on xi and V j, where V j is
assumed to be a 4-velocity vector.

On the other hand, there is the intriguing problem of an anomalous en-
ergy dependence of the meson lifetimes[7] and of the fundamental parameters
of the K0-K̄0 system[8, 9]. It has been reported by Aronson et al.[8] that
the data which were obtained from a series of regeneration experiments at
Fermilab (in the energy range EK = 30− 130GeV ) specifically indicate that
the values of the mass difference ∆m = mL −mS, the lifetime τS, and the
CP -violation parameters |η±| and tanφ± as determined in the K0-K̄0 system
rest frame depend on the velocity of this rest frame with respect to the lab-
oratory. Aronson et al.[9] arrived at the conclusion that the experimental
results, if correct, can not be ascribed to an interaction of kaons with an
electromagnetic, hypercharge, or gravitational field, or to the scattering of
kaons from stray charges or cosmic neutrinos. In order to describe the anoma-
lous behavior of these four parameters, denoted by x, they introduced the
slope parameters b(N)

x defined by

x = x0(1 + b(N)
x γN), γ = EK/m, N = 1, 2 (2)

and presented an elaborated analysis of the origin of these b(N)
x . We note that

Eq.(2) exhibits in fact, up to a factor γ, Blokhintsev-Redei-like behavior as
it was described earlier for the lifetimes of unstable particles[10].
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Nielsen and Picek[7] have also considered an attractive Lorentz-noninvariant
LNI model based on the ”minimally” generalized metric

gij = diag(+1,−1,−1,−1) + diag(α, α/3, α/3, α/3),

which in particular yields the following high-velocity formula for decaying
mesons: τ = τ0γ(1 + 4

3
αγ2)−1. From a consideration of the experimental

results they found the average of the Lorentz-breaking parameter α over the
π-, µ-, and K-meson data as follows: 〈α〉 = (0.54± 0.17)× 10−3.

However, as was outlined by Aronson et al.[9] any complete theory must
be able to account for the data on ∆m = mL − mS and |η±| (not only
τS). Perhaps, as we shall try to show in this paper, it is the Lie-isotopic
Finsler-metric approach (which manifestly exhibits the velocity dependence
of the metric, and generalizes, but does not violate, Lorentz invariance) that
makes it possible to describe naturally the anomalous Blokhintsev-Redei-like
behavior of the parameters of the K0-K̄0 system at high energies.

The lifting of the Lorentz group for the Lie-isotopic Finsler metric (1)
derived in Ref.[1] is used in Sec.2 to demonstrate how the generalized Lie-
isotopic Finslerian Lorentz transformations (3) give rise to BR-like behavior
of the lifetimes [Eq.(7)].

In Sec.3, we solve the generalized Lie-isotopic wave equation (8) for scalar
particles in the metric (1) with b = b(x, V ) and c = const, in the WKB
approximation. The metric is taken to be PPN expanded to include the
function b3 of the 3-velocity V a. The kaon wave function (13) proves to
be dependent on this function b3. This leads to energy dependence of the
parameter ∆m [Eq.(14)]. Ultrarelativistic expansion of b3 in the factor γ =
(1− V 2/c2)−1/2 has been used.

It should be emphasized that the purely gravitational part of the metric
(i.e., that associated to the potential U = rg/r of static weak gravitational
field) does not lead to (additional) energy dependence of ∆m, in agreement
with the statement of Ref.[9] (see Sec.3).

Unfortunately, apart from τS and ∆m, direct application of the technique
considered to the η± energy-dependence seems to be misleading. Neverthe-
less, one can attempt a modification of the basic spinor equation[9] of the
K0-K̄0 system by rewritting it in Lie-isotopic Finslerian covariant form to
include effects of V -dependent space-time metric, e.g., of the metric (1). In-
deed the analysis of Sec.3 ensures that in the case the metric coefficients
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ba(V ) may give rise to V -dependence of the parameter η± (see also the phe-
nomenological modification of Ref. [9]). However, we shall not consider this
problem here.

Also, in Sec.3, we test the predictions for the parameters τS and ∆m to
establish consistency of the results.

The analysis presented in this paper is far from complete. Nevetheless,
we hope that the possibility investigated here may have some use in solving
the current problem of description of the anomalous energy dependence of
the K0-K̄0 system parameters.

In addition, with the generalized Lorentz transformations (3) the conven-
tional Doppler-shift formula is modified. So, one should inspect the compat-
ibility of the low-velocity limit of the Finslerian Doppler-shift formula with
experiment. Accordingly, in the Appendix we make a low-velocity expan-
sion of b3 [(16)] in the Doppler shift [(15)], arriving at the conclusion that
V -dependent terms appear only in second order and higher in V/c.

It should be noted that the Finsler geometry is invoked now to investigate
a rather wide range of phenomena, especially in gravitational physics. For
a comprehensive introduction to the Finsler geometry, and for a review of
its application in modern physics, we refer the reader to Refs.[4, 5, 6] and
Refs.[5, 11, 12, 13, 14, 15]

respectively. In particular, post-Newtonian V -dependence effects in Fins-
lerian theory have been studied in Refs.[11, 12, 14, 15], where observational
and experimental limits on specific Finslerian parameters were found. Also,
for a review of possible V -dependence effects and broken Lorentz symmetry,
see Ref. [16].

2 Velocity dependence of the lifetime τS

We start with the Lie-isotopic space-time metric defined by (1), which is
chosen to be Finslerian, i.e. the coefficients b and c are taken to depend on the
coordinates xi and velocities V j: b = b(x, V ) and c = c(x, V ) (i,j,...=1,2,3,4).
Using the Lie-isotopic lifting of the Lorentz group, Santilli[1] obtained explicit
expressions for generalized Lorentz transformations as follows:

z′ = γ̂(z − V t), t′ = γ̂
(
t− V b2

3z

c2

)
, (3)
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γ̂ =
(
1− V b2

3V

c2

)−1/2
. (4)

(in the limit b = c = 1 the usual special relativity theory is recovered).
Apparently, Eqs.(3) and (4) lead to a straightforward modification of the
conventional lifetime formula, namely,

τ = τ0γ̂ (5)

In the ultrarelativistic approximation, we can write for b3

b3(x, V ) = 1 + λ0 + λ1γ + λ2γ
2 + · · · , (6)

where λ ¿ 1. Here, we have dropped gravitational termms arising from x
dependence of b3, and put, for simplicity, c = 1. Combining Eq.(5) with
Eq.(6), we obtain the desired BR-like behavior of the lifetimes of mesons in
the following form:

τ = τ0γ

[
1 + λ0γ

2 + λ1(1 + λ0)γ
3 +

(λ2
1

2
+ λ2(1 + λ0)

)
γ4

]
. (7)

3 Velocity dependence of the mass difference

∆m

As shown in Ref.[9], the difference ∆m = mL−mS comes from that between
the phases of free-particle wave functions describing KL and KS respectively,
and the energy dependence of ∆m does not arise from a coupling of the
K0-K̄0 system to an external metric gravitational field. However, when a
space-time metric depends manifestly on the velocity V , as it does in the
case of Finsler geometry, one must investigate whether it gives rise to an
additional V -dependence of the wave functions governed by covariant wave
equations.

To this end, we begin with the Lie-isotopic generalization of the Klein-
Gordon equation for the scalar particle, which can be written as

(D ∗D − k2)φ = 0, (8)

where k = mc/h̄ and D ∗ D denotes Lie-isotopic Finslerian lifting of the
ordinary contraction, D ∗ D = Digij(x, V )Dj. In the case of a static weak
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gravitational field, we can write a parametrized post-Newtonian (PPN) rep-
resentation of the Finslerian metric (1) in the form

g44 = 1− 2U + O(U2), g4a = 0,

gab = −b2
a(V )δab(1 + 2γU) + O(U2), (9)

where U = rg/r and γ is γPPN (a,b,...=1,2,3). Inserting Eq.(9) in Eq.(8)
then gives

(1 + 2U)∂2
t φ− (1− 2γU)

∑
a

ba2∂
2
aφ + (γ − 1)~g · ∇φ− k2φ = 0, (10)

where ~g = ∂aU . Further, in the WKB approximation,

φ(t, z, V ) = A exp(
i

h̄
S(z, V )

i

h̄
Et)

S = S0 + h̄S1, (11)

Eq.(10) reads

h̄0 : (1− 2U)E2 + (1 + 2γU)b2
3S

′2
0 −m2 = 0

h̄1 : −(1− 2γU)(iS ′′0 − 2S ′0S
′
1) + (γ − 1)gziS

′
0 = 0 (12)

Up to the slowly varying amplitude factor and normalization constant, the
solution for φ is then given by

φ(t, z, V ) ∼ exp
( i

h̄

∫ t

b−1
3 (1 + γPPNU)p′dz′ − i

h̄
Et

)
, (13)

where p′ = (E ′2 −m2)−1/2, E ′ = (g44)
−1/2m/γ̂. So, taking into account the

new γ̂ factor (4), we obtain for the phase difference

∆φ = − i

h̄
tlab(γ̂b2

3)
−1

= − i

h̄
tlab

1

γ

[
1− λ0 − λ1γ − (

λ0

2
+ λ2)γ

2
]

(14)

Two comments are in order: (a) To be strictly correct, we have to note that
in Finsler geometry a metric is defined on the tangent bundle TM → M ,
with M being a smooth manifold. One can treat a tangent vector y ∈ TMx
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attached at the point x ∈ M as velocity V of a test particle in physical
kinematic context[14, 15]. (b) The result (13) can be obtained in another way
since it exhibits in fact space-time properties of the kaon traveling process
(see discussion in Ref.[9]).

Note that in our case the single function b3(V ) is used to govern the energy
dependence of both the parameters τS and ∆m. So the question arises as
to the consistency of the predictions for the behavior of these parameters
in view of the experimental data. First, we note that according to Eqs.(7)
and (14), the slope parameters τS and ∆m have the required opposite signs.
Then, the values of the λ’s in these equations may be determined to account
for the experimental data by identifying corresponding combinations of λ’s
with the experimental values of b(N)

x presented in Ref.[9].

Appendix

The generalized Lorentz transformations (3) immediately lead to the follow-
ing Doppler-shift formula:

ω = ω0
1− V b2

3V/c2

1− (V b2
3/c) cos α

. (15)

Making the general low-velocity approximation

b2
3 = 1 + κ0 + κ1V + 2SaV

a + AabV
aV b + O(V 3) + O(U), (16)

where κ, Sa, and Sab are Finslerian expansion parameters, in Eq.(15), we
obtain

ω = ω0

(
1 + (1 + κ0)

V

c
+ (1 + κ0 − cκ1)

V 2

c2
+ 2SaV

a V

c

)
+ O(V 3) (17)

(we put α = 0). According to this equation, V -dependent terms from the
expansion (16) enter the second-order Doppler-shift effect.
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