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Abstract

Lie-isotopic lifting of the commutation and anticommutation rela-
tions of creation-annihilation bosonic and fermionic operators is con-
sidered. Lie-isotopic generalization of the associated supersymmetry
generators and of the underlying superalgebra in considering of the
Lie-isotopically lifted hamiltonian of supersymmetric quantum me-
chanical oscillator is defined. The generalised oscillator has the prop-
erties similar to that of the conventional supersymmetric oscillator:
the ground state is characterised by null energy while the other energy
levels are twice degenerated. A possible Lie-isotopic generalization of
supersymmetric quantum mechanics is briefly discussed.

Hadronic J. 13 (1990) 263-276.

0



1 Introduction

In a recent series of papers Mignani, Myung and Santilli[1, 2, 3, 4, 5] de-
veloped Lie-isotopic generalization of the conventional quantum mechanics.
The generalization called hadronic mechanics is based on the Lie-isotopic lift-
ing of the operator theory consisting of: the liftings of an associated complex
algebra of operators, E , field of complex numbers, C, and of quantum me-
chanical Hilbert space, H. In the Lie-isotopic formulation, the lifting E → Ê
is characterised by introducing of the product A ∗ B ≡ ATB, where T is
hermitian, invertible and fixed element of E , and of the new unit I∗ = T−1.
The antisymmetric algebra attached to the isotope Ê is a Lie-isotopic algebra
with the generalized bracket [A,B]∗ = A ∗B −B ∗ A.

Myung and Santilli[1] presented a generalization of all familiar operations
on a conventional Hilbert space, with the compatible generalized fundamental
equations being iso-Heisenberg equation and iso-Schrodinger equation[4, 5].

Various aspects of the hadronic mechanics have been studied by Nishioka[6].
For a brief survey of the literature on the Lie-isotopic theory see Ref. [7].

Explicit calculations[8] showed that under a natural Lie-isotopic lifting
of the anticommutation algebra of creation-annihilation operators and of the
number operator, the Pauli principle is garanteed for a composite system in
the exterior branch of hadronic mechanics, in a way compatible with possi-
ble departure from the principle for each spin-half constituents. A similar
result for the Heisenberg uncertainty principle had been established earlier
by Mignani, Myung and Santilli[5]

In this paper, we consider Lie-isotopic liftings of the commutation and an-
ticommutation of the creation-annihilation bosonic anf fermionic operators,
respectively, in order to study a Lie-isotopic generalized of supersymmetric
quantum mechanical harmonic oscillator. We shall show that the associated
hamiltonian, supersymmetric generator, and superalgebra can be naturally
generalized in a Lie-isotopic way, with the ground state energy of the general-
ized oscillator being null while the other energy levels being twice degenerate.

In section 2 we briefly recall the basic definitions and properties of bosonic,
fermionic and supersymmetric oscillators. Lie-isotopic liftings of these oscil-
lators are defined in section 3. We call the lifted oscillators as hadronic
mechanical ones following the treatment that the Lie-isotopic liftings of the
conventional quantum mechanics (QM) is refered to as hadronic mechanics
(HM). WE show explicitly that the HM bosonic oscillator has the same en-
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ergy spectrum as the conventional QM one. The HM fermionic oscillator
has been already found[8] to have the same energy spectrum as the QM one
(Pauli principle is garanteed). Supersymmetry properties for the composite
system consisting of HM bosonic and HM fermionic oscillators take place
when one uses the same element T for the lifting of both the bosonic and
fermionic oscillators, and define then the corresponding lifting of supersym-
metry generators via this T .

In section 4 we discuss a possible Lie-isotopic generalization of supersym-
metric quantum mechanics following the convwntional procedure of including
”boson-boson” and ”boson-fermion” interactions to the ”free” theory. In sec-
tion 5 we briefly discuss some open problems of the supersymmetric hadronic
mechanics.

2 Supersymmetric harmonic oscillator

In the section we briefly recall one of the main problems of supersymmetric
quantum mechanics [9, 10] (SUSY QM), namely, the problem of supersym-
metric harmonic oscillator.

(a) QM bosonic oscillator.
Hamiltonian of the usual QM harmonic bosonic oscillator,

HB =
1

2
p2 +

1

2
ω2

Bq2, (1)

where the momentum and the coordinate operators, p and q, satisfy the
canonical commutation realtions, [p, q] = 1, can be presented in terms of
bosonic creation-annihilation operators, b+ and b, as follows:

HB =
1

2
ωB{b+, b}, (2)

where

b =
1√
2ωB

(ip + ωBq), (3)

and the following commutation relations hold:

[b, b+] = 1, [b, b] = 0, [b+, b+] = 0. (4)
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Operatores b and b+ act on the state |nB >, and the energy spectrum of the
hamiltonian (2) is well known to be

EB = ωB(nB +
1

2
), nB = 0, 1, 2, ... (5)

where nB are the eigenstates of the bosonic number operator NB = b+b.
(b) QM fermionic oscillator.
Fermionic creation-annihilation operators, f+ and f , obey the anticom-

mutation relations,

{f, f+} = 1, {f, f} = 0, {f+, f+} = 0. (6)

Hamiltonian of the fermionic oscillator can be constructed, by the analogy
with the bosonic hamiltonian (2), as

HF =
1

2
ωF [b+, b]. (7)

Operators f and f+ act on the state |nF >, and the energy spectrum of
the fermionic oscillator can be calculated by using of the anticommutation
relations (6), namely,

EF = ωF (nF − 1

2
), nF = 0, 1 (8)

where nF = 0, 1 (Pauli principle) are the eigenvalues of the fermionic number
operator NF = f+f .

(c) QM supersymmetric oscillator.
For the composite system of the bosonic and fermionic oscillators, ω =

ωB = ωF , we get from (5) and (8)

E = ω(nB + nF ), (9)

This formula implies that all energy levels of the system are twice degenerate
except for the ground state, nB = nF = 0, characterized by zero energy,
E = 0. Generators of the symmetry (nB → nB∓1, nF → nF ±1) responsible
for the degeneracy are supersymmetry generators,

Q− =
√

2ωb+f, Q+ =
√

2ωbf+. (10)
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They transform ”bosons” to ”fermions”, and vice versa. Q+|nB, nF >∼
|nB− 1, nF +1 >, Q−|nB, nF >∼ |nB +1, nF − 1 >, and are nilpotent, Q2

+ =
Q2
− = 0. Supersymmetry generators (10) commute with the hamiltonian of

the supersymmetric oscillator,

H = HB + HF ≡ ω(b+b + f+f) (11)

namely,
[Q±, H] = 0. (12)

Thus, the hamiltonian (11) is supersymmetric. Further, anticommutator
between Q− and Q+ is proprtional to hamiltonian,

{Q−, Q+} = 2H. (13)

In terms of anticommuting hermitian operators Q1,2,

Q1 = Q+ + Q−, Q2 = −i(Q+ −Q−) (14)

the hamiltonian (11) can be rewritten as h = Q2
1 = Q2

2, and, again, operators
Q1,2 commute with H,

[Qi, H] = 0. (15)

i.e. they are supersymmetry generators, and

{Qi, Qk} = 2δikH, i, k = 1, 2. (16)

The last two relations are known as presenting a simplest Lie’s superalgebra.
Aupersymmetry is a dynamical symmetry since one of the generators of

it is a hamiltonian. Note also that the SUSY hamiltonian H should have a
non-negative energy spectrum since it can be presented as a square of the
hermitian operators Q1 or Q2.

3 Lie-isotopic lifting of the SUSY QM oscil-

lator

In this section we define Lie-isotopic liftings of the hamiltonian (11) of the
SUSY oscillator and the SUSY generators (10). We shall show that the gen-
eralized hamiltonian and SUSY generators verify the Lie-isotopically lited su-
peralgebra relations, similar to the basic relations (12) and (13), if the under-
lying commutation and anticommutation relations for creation-annihilation
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bosonic and fermionic operators have been lifted by the same element T . It
is worthwhile to note that the latter requirement is similar to that of coinci-
deness of the frequinces ωB and ωF , to gain supersymmetry.

(a) HM bosonic oscillator.
Define the Lie-isotopic lifting of the commutation relations (4) as follows:

[b, b+]∗ ≡ b ∗ b+ − b+ ∗ b = 1, [b, b]∗ = 0, [b+, b+]∗ = 0 (17)

where b ∗ b+ ≡ bTb and I∗ = T−1, Here, we have merely replaced the com-
mutator and the unit by the Lie-isotopic commutator and the iso-unit, re-
spectively. In the limit T → 1 the Lie-isotopic commutation relations (17)
recover the conventional ones (14).

The lifting of the hamiltonian (2) of the bosonic oscillator can be naturally
defined as

HB =
1

2
ωB{b+, b}∗, (18)

where {b, b+}∗ ≡ b ∗ b+ + b+ ∗ b = 1. With the following lifting of the bosonic
number operator:

NB = b+ ∗ b (19)

which is evidently iso-hermitian, N+
B = NB, nd the Lie-isotopic commutation

relations (17), the hamiltonian (18) can be rewritten as

HB = ωB(NB +
1

2
). (20)

Let us consider the iso-eigenvalue problem[3] for the Lie-isotopic bosonic
number operator (19),

NB ∗ |nB >= n̂B ∗ |nB >= nB|nB > . (21)

Here, the iso-modular action of the operator NB on iso-ket vector ∗| > of the
iso-Hilbert space is presented, and n̂B is an iso-number, n̂B ≡ nBI∗, nB ∈ C.

Let us examine now are the eigenvalues nB of NB integer, as it is for the
case of the convational bosonic number opearotr NB of section 2. Using the
commutation relations (17), we find, following the conventional procedure,
that

[NB, b+]∗ = b+ (22)

so that
b+ ∗NB = (NB − I∗) ∗ b+
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b+ ∗ b+ ∗ b ∗ b = b+ ∗NB ∗ b = NB ∗ (NB − I∗), etc.

and then, in general, for k operators,

< | ∗ b+ ∗ ... ∗ b+ ∗ b ∗ ... ∗ b ∗ | >= nB(nB − 1)...(nB − k + 1) < | ∗ | > . (23)

Thus, since the iso-norm < | ∗ | > is not negative, and the eigenvalues of
the iso-hermitian opearotr are real[3], we arrive at the conclusion that nB =
0, 1, 2, ... exactly as in the usual Bose case (see Eq. (5)). Therefore, the
energy spectrum for the HM bosonic oscillator has the form

EB = ωB(nB +
1

2
), nB = 0, 1, 2, ... (24)

(b)HM fermionic oscillator.
In Ref.[8] the following Lie-isotopic lifting of the anticommutation rela-

tions of the creation-annihilation fermionic operators, f+ and f , has been
defined:

{f, f+}∗ = I∗, {f, f}∗ = 0, {f+, f+}∗ = 0. (25)

The eigenvalues of the Lie-isotopically lifted fermionic number operator,
NF = f+ ∗ f , are nF = 0, 1 (validity of the Pauli principle in the exte-
rior branch of hadronic mechanics). This is shown explicitly in Ref. [8] and
will not be repeated here.

A natural Lie-isotopic lifting of the conventional hamiltonian (7) of the
QM fermionic oscillator can be written as

HF =
1

2
ωF [b+, b]∗ (26)

so that the energy spectrum turns out to be of the same form as in the usual
Fermi case,

EF = ωF (nF − 1

2
), nF = 0, 1. (27)

(c) HM supersymmetric oscillator.
As in section 2 let us put ω = ωB = ωF , and study a composite HM

bosonic-fermionic oscillator with the hamiltonian

Ĥ = HB + HF ≡ ω(b+ ∗ b + f+ ∗ f). (28)
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According to Eqs.(24) and (27) the energy spectrum of the composite system
appears to be

E = ω(nB + nF ), (29)

so that, again, the twice degeneracy of all the energy levels takes pleace
except for the ground state, nB = nF = 0, characterized by zero energy,
E = 0.

By the analogy with the liftings of the number operators made in this sec-
tion, one can define the following Lie-isotopic liftings of the SUSY generators
(10):

Q̂− =
√

2ωb+ ∗ f, Q̂+ =
√

2ωb ∗ f+. (30)

Using the commutation relations [b+, f ]∗ = [b, f+]∗ = 0, one can easily verify
that the newoperators Q̂± are iso-nilpotents, Q̂+ ∗ Q̂+ = Q̂− ∗ Q̂− = 0, and
are conjugated to each other, Q̂+

+ = Q̂−, Q̂+
− = Q̂+. These quantities are

indeed generators of a symmetry since they commute with the hamiltonian
Ĥ,

[Q̂±, Ĥ] = 0 (31)

where the use of the relation [f, b+]∗ = 0 has been made. Further, they verify
the relation

{Q̂−, Q̂+}∗ = 2Ĥ. (32)

where we have used the relations [f, b]∗ = [f+, b+]∗ = 0.
Then, defining the operators

Q̂1 = Q̂+ + Q̂−, Q̂2 = −i(Q̂+ − Q̂−) (33)

we find that
[Q̂i, Ĥ]∗ = 0. (34)

and
{Q̂i, Q̂k}∗ = 2δikĤ, i, k = 1, 2. (35)

Note that the relations (34) and (35) are Lie-isotopic counterparts of the
superalgebra relations (15) and (16) so that it can be refered to as a simplest
realization of iso-superalgebra.

It is instructive to verufy that Q̂i are iso-hermitian operators, Q̂+
i = Q̂i.

Let us take, for example, Q̂2:

Q̂2 = −iI∗(Q̂+ − Q̂−) = −iT ∗ (Q̂+ − Q̂−)
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Q̂+
2 = −(Q̂+ − Q̂−)+ ∗ (iT )+ = −(Q̂+ − Q̂−) ∗ (iT ) = Q̂2

where we have used the relation A+ = THAHT−1 and TH = T (here, H
denotes usual hermitian conjugation), and the fact that the iso-hermitian
conjugation has the same properties as the hermitian one[3]; for example,
(A ∗B)+ = B+ ∗ A+, (A+)+ = A, etc.

Therefore, the hamiltonian Ĥ, being an iso-square of iso-hermitian oper-
ator, Ĥ = Q̂1 ∗ Q̂1 = Q̂2 ∗ Q̂2, has indeed a non-negative energy spectrum,
as it is displayed in (29).

It should be noted that the same element T must be used in the liftings of
the commutation and anticommutation relations for bosonic and fermionic
operators to provide a consistent lifting of the supersymmetry, T = TB = TF .
This is in close analogy with the wellknown requirement that the frequences
ωB and ωF must coincide to provide aupersymmetry of the hamiltonian H
of the QM harmonic oscillator (see section 2). Perhaps, here a possibility
arises that one can regain a supersymmetry by appropriate choice of TB and
TF when the frequences ωB and ωF are posed not to be equal to each other;
SUSY is explicitly broken, ωB 6= ωF , but iso-SUSY might be taken to be
exact. However, in this case the lifting will be two-fold due to the fact that
the commutation and anticommutation relations should be lifted by different
fixed elements TB and TF , respectively. We shall not discuss this interesting
possibility here noting however that the Lie-isotopic actually can provide
regaining of the conventional symmetries, such as, for example, Lorentz one,
recovering thus conceivable symmetry-breaking models; see for a review Ref.
[7].

4 Supersymmetric hadronic mechanics

In this section we briefly discuss a possible Lie-isotopic way to generalize
supersymmetric quantum mechanics.

Generalization of the hadronic mechanical SUSY oscillator which cor-
responds to a ”free” HM theory, to the case including ”boson-boson” and
”boson-fermion” interactions can be made in an essentially similar way as it
in the conventional free SUSY QM case. Namely, we note, first, that the HM
SUSY generators Q̂± will remain iso-nilpotent under the generalization

Q̂+ = B−(b, b+) ∗+ f, Q̂− = B+(b, b+) ∗ f (36)

8



where B± are arbitrary functions of b and b+ (all multiplications are, clearly
Lie-isotopic); (B−)+ = B+ and (B+)+ = B=. Hereafter, to simplify notation
we drop the hat, indicating that the Lie-isotopic lifting has been made, over
operators.

Under these definitions of SUSY generators, the associated hadronic me-
chanical supersymmetric hamiltonian, H, can be written as

H = {Q+, Q−}∗. (37)

Indeed, since the operators Q± defined by (36) are iso-nilpotent, Q±∗Q± = 0,
we have

[Q±, H]∗ = 0. (38)

Let us represent bosonic operators B± in the convenient form

B± = B1 ± iB2 (39)

where Bi are assumed to be iso-hermitian operators. Further, in the matrix
representation, fermionic operators f and f+ can be presented as

f = σ− =

(
0 0
1 0

)
, f+ = σ+ =

(
0 1
0 0

)
(40)

σ± = σ1 ± σ2

so that the wave function is two-component, with upper (lower) component
corresponding to fermionic number nF = 1 (0). Combining Eqs.(36), (39)
and (40), for operators

Q1 = Q+ + Q−, Q2 = −i(Q+ −Q−) (41)

we have the following matrix representation:

Q1 = B1 ∗ σ1 + B2 ∗ σ2, Q2 = B1 ∗ σ1 −B2 ∗ σ2, (42)

It is easy to verify then that, again, as in the HM SUSY oscillator case
(section 3), the following anticommutation relations hold:

{Qi, Qk}∗ = 2δikH, (43)
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It is important to note that (43) does not depend on commutation relations
between B1 and B2. Also, since the hamiltonian H defined by (43), (43) is
not necessarily quadratic in b and b+, it can describe an interaction.

After some algebra, for the hadronic mechanical supersymmetric hamil-
tonian (37), we have finally, in the matrix representation,

H =
1

2
{B−, B+}∗ + [B−, B+]∗ ∗ σ3 (44)

where the σ-matrices have been assumed to obey the relations

[σi, σj]
∗ = 2iε̂ijkσk. (45)

The hamiltonian (44) can be treated as a Lie-isotopic generalization of
the hamiltonian of supersymmetric quantum mechanics[9, 10], and recovers
it in the case T → 1.

The first term in the SUSY HM hamiltonian (44) is pure bosonic and
contains, therefore, only ”boson-boson” interaction terms while the last one
describes ”boson-fermion” interactions.

We note from (44) that the hamiltonian is isosupersymmetric only then
it contains fermionic degree of freedom, presented by the last term in (44),
so that [B−, B+]∗ 6= 0.

5 Discussion

One can try to specify further the matrix representation of the SUSY HM
hamiltonian (44) by defining the bosonic operators B± in the form

B± =
1

2
(∓ip + W (q)) (46)

in order to preserve a quadratic srtucture of the hamiltonian (44) in the
mommentum p. If the momentum operator p and the superpotential W can
be defined as iso-hermitian entities, the bosonic operators B− and B+ will
be, evidently, conjugated to each other. Then, inserting (46) into (44) we get

H =
1

2
(p ∗ p + W ∗W + i[p,W ]∗ ∗ σ3). (47)
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The last term in (47) can be presented also in the form W ′ ∗ σ3, where
we have denoted W ′ = ∂q ∗ W (q). This hamiltonian can be treated as a
Lie-isotopic generalization of the hamiltonian of Witten’s supersymmetric
quantum mechanics[9].

The hamiltonian (47) can be treated also as a set of two conventional
(not iso-supersymmetric) hamiltonians, H+ and H−,

H± =
1

2
(p ∗ p + W ∗W ±W ′(q)). (48)

which have the same spectrum due to the underlying iso-supersymmetry, for
arbitrary function W (q).

It is then reasonable to expect that if the ground state is not degenerate,
one can find, as in the conventional SUSY QM case[10] for Schrodinger equa-
tion, all energy levels, E > 0, for (one-dimensional) iso-Schrodinger equation
with the hamiltonians of the type (48), by simple iterative procedure.

One of the open problems is to maintain a coordinate (superfield) rep-
resentation of the Lie-isotopic anticommutation relations (25) of fermionic
operators, f and f+. In the conventional case, f = θ and f+ = ∂θ act on a
supersymmetric wave function Ψ(x, θ) == a1(x)+θa2(x), where θ is a Grass-
mannian variable, {θ, theta} = 0, and verify the relation {θ, ∂θ}Ψ(x, θ) =
Ψ(x, θ). A naive way to generalize the Grassmann algebra of anticommuting
variables might be to set the relation {θ, theta}∗ = 0, i.e. to state that θ’s
are iso-nilpotent, θ ∗ θ = θTθ = 0. However, T can not be here an element
of Grassmann algebra for the obvious reason that the left-hand-side of the
latter relation will be odd (anticommuting) while the right-hand-side is not.
So, the generalization of Grassmann algebra seems to be provided obly by
an even (not Grassmannian) entity T .

The problem of operating with Grassmann variables within the Lie-isotopic
theory is of great importance, both on the grounds of its own meaning and
also for future, practical purposes. For instance, Grassmann variables are
known of essential use in the conventional, functional approach in quantizing
of gauge field theories (standard SU(2) × U(1) electroweak theory, SU(3)
quantum chromodynamics) and, therefore, it seems to be reasonable to pro-
vide a Lie-isotopic version of Grassmann techniques to quantize Lie-isotopic
gauge theory[11] (see for a review Ref [7]).
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