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Abstract

It is shown that the potential of a new hadronization model can be
reproduced naturally in terms of Lie-isotopic generalization of the un-
derlying operator algebra and Dirac equation. The equation provides
quantum mechanical description of an eventual non- hamiltonian in-
teraction of the quark fields in the hadronization regime, characterized
as a nonunitary evolution. This allows us to mimic an effective quark
confinement.



1 Introduction

In a recently proposed phenomenological hadronization model[l, 2] which
has been successfully applied to the charm decay and other processes|[3] (see
also predictions for B mesons decayl[4]), the quark-antiquark pairs obey, in
the rest frame of the decaying meson, a generalized Dirac equation

(9" 0 + 9% /x5 — m)y = 0, (1)

According to this equation the quarks produced in a weak decay are described
by a free wave damped by a gaussian, ¥ = ¢exp(—z?/2z2), where the width
xo (xg = 0.2 — 0.3fm[2]) is a separation distance beyond of which quarks
hadronize and do not appear as asymptotic states. The non-hermitian part
of the associated hamiltonian,

H = (i -0 +i7 - Z/x2 —m) (2)

leads to expected decreasing of the total probability (¢[¢) with time[2],
d(y|v)/dt = (H — HT) /i, which is a desirable feature of the quark hadroniza-
tion.

In the energy region /s ~ 1—3GeV, i.e. between the u, d, ¢, and s thresh-
olds, perturbative QCD fails to describe carefully such a phenomenon|[3| so
that one can investigate this, as a first step, in terms of first quantization
models. The BBPT model of Bediaga et al.[2] gives a simple minded mecha-
nism which mimics an effective quark confinement and hadronization, and, on
the other hand, provides a free particle limit for very short quark separation,
|| /zo < 1.

Various attempts[5]-[7] have been made recently to reproduce the non-
hermitian potential of the Eq.(1), and justify the lack of Lorentz invariance
of the BBPT model. Gasperini[5] considered a coupling quark field to the
geometry of an anti-de Sitter vacuum[5] (cf.[8]). Cianiello et al.[6] supposed
that some aspects of the hadronization process can be reproduced by coupling
the quark field to the conformally flat metrics, g, = nuexp(27?/323) (see
also [7]).

Also, various aspects of a geometrical approach to the problem of strong
interactions and confinement have been discussed by Hehl et al.[9], Sijacki[10],
Santilli[11]; see also[12, 13].

In this paper, we use the Lie-isotopic generalization of the Dirac equa-
tion, and reproduce the BBPT potential of the Eq.(1) assuming that such
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a potential originates from non-hamiltonian interaction of the quark fields
arising, as we suppose, at hadronization scale xg .

Without attempting here to construct a detailed quantum mechanical
framework for hadronization, we shall simply show that the Lie-isotopic ap-
proach may give a natural interpretation for the model of hadronization
under the same assumptions as those of the BBPT model[2]. We briefly dis-
cuss mathematical properties and immediate implications of the Lie-isotopic
model restricting consideration on the new aspects arising from this ap-
proach. We try to display its relation with the other interpretation schemes
of the original BBPT one.

Lie-isotopic generalization of quantum mechanics called hadronic mechan-
ics is based on a natural generalization of representation of Hilbert space, and
verify extended realization of algebra of observables via generalized (associa-
tive) product. The generalization provides, particularly, nonlinear equations
and non-unitary time evolution so that tempting possibilities arise in this
approach which may be needed for physics.

For more detailed and precise development of Lie-isotopic generalization
we refer the reader to the original papers and recent review[14].

Another generalization of the conventional quantum mechanics has been
attempted recently by Weinberg[20]. This generalization is based on a possi-
ble nonbilinear representation of observables, with the algebra being similar
to Poisson one. The Poisson product is not associative so that the problem
arises as to the integrability of (discrete) Hamiltonian systems. This leads
to an important difference between ordinary quantum mechanics and the at-
tempted nonlinear formalism|[20]. Weinberg emphasized that generalizations
are indeed necessary to test the quantum mechanics itself, for which modern
experimental tests, ruled out conclusively local hidden variable theories, do
not provide accuracy better than 2.

The paper is organized as follows. In Sec.2, we briefly sketch some results
of the Lie-isotopic technique. In Sec.3, we use the generalized Dirac equation
in the BBPT model. In Sec.4, we discuss on the results.



2 Lie-isotopic generalization of the Dirac equa-
tion

According to the non-hermiticity of the associated hamiltonian (2), the BBPT
model[2] describes, in fact, nonunitary time evolution of the quark-antiquark
pair. We note that one can modify the conventional quantum mechanical de-
scription to include such a non-canonical time evolution by the Lie-isotopic
generalization [11]-[16] of the underlying associative enveloping algebra A of
operators A, B, --- of Hilbert space equipped with the conventional product
AB, and attached Lie algebra with the product [A, B] = AB — BA. Namely,
the lifting A — A is defined by the product A «x B = ATB and Lie-isotopic
algebra with the product [A, B] = Ax B — Bx A, where T is a fixed element
of algebra A. In the limit 7" — 1, the Lie-isotopic theory recovers the usual
one.
In ref.[11], the following Lie-isotopic generalization of the Heisenberg
equation has been proposed in order to describe closed non-hamiltonian sys-
tems: idA/dt = [A, B], where B represents total energy of the system. The
evolution can be presented then as A(t) = exp(it X ) A(0)exp(—itX), where
the nonhermitian operator X is defined by the decomposition X = T'B, with
the isotopic element 7" and the energy B being noncommuting hermitian op-
erators, TT =T, B* = B, [T, B = X — X . It is important to note here that
these formulas as well as the new Lie bracket [,]| arise naturally when one
deals with nonunitary evolution owing to the fact that any non-hermitian
operator can be in general decomposed into two noncommuting hermitian
ones[11].

The action of the T-isotopically lifted operators on physical states is de-
fined by A * 1, A € A[12]. This definition preserves the structure of the
associated unital (left) modul since I* x 1) = 1), where I* = T~! is the unit
operator of algebra A.

It should be noted that in spite of the nonunitarness of the time evolution
the energy B is conserved due to the antisymmetry of the new bracket [, ],
dB/dt = 0. Energy nonconservation processes can be described by using
of the Lie-admissible generalization (see [12] and references therein), which
recovers the Lie-isotopic one, when one determines the bracket in the form
[A,B]° = ARB — BSA, with R and S being fixed operators, R = S,
R, S e A



Tending to provide a relativistic formulation of the Lie-isotopic technique
one can construct the corresponding Lie-isotopic lifting of the Dirac equation
written in Hamiltonian form as follows[13, 14]:

Z%Qf = Hp 9 (3)
where Hp = ap'+ m( . This equation can be rewritten in covariant form,
(i7" 8y —m) x ¢ =0, (4)
where y-matrices verify the Lie-isotopic anticommutation relations
{7} = 29", ()

and 0yl = 0. Eq.(4) represents generalized Dirac equation for the spinor
subjected to a non-hamiltonian interaction, which is defined by the (local)
operator T" entering the definition of the new Lie bracket [,]*, and provides
naturally a description of the nonunitary evolution.

3 Lie-isotopic approach to the BBPT model

In the conventional terms Eq.(4) takes the form
(iv"0,, + 1T 4", T — m)p = 0. (6)

This equation implies that we can choose T = exp(—#?/2x3) to meet the
BBPT model. We will discuss this specific representation below.

If this is not entirely due to the coincidence, it may indicate that the
origin of the BBPT potential is a non-hamiltonian interaction of the quarks
produced which perhaps begins manifest itself only at the low energy scale,
Vs = 1 — 3 GeV. Perhaps charmed mesons decays give an experimental
evidence for such an interaction. In attributing such effects to the non-
hamiltonian interaction, we are arguing in effect that the laws are quantum
mechanical, but the evolution is not really unitary as the quark separation
|z| increases. The "non-hamiltonian” character of the interaction may be
treated as the effect of overlapping the momenta distributions of the two
quarks produced[2]. The latter is an essential point of the hadronization
model.



Two comments are in order: (i) The T-isotopic lifting of the algebra
A of the operators A, B, ... acting on Hilbert space, spanned by bra and
ket vectors (¢| and |¢), assumes corresponding lifting of the conventional
quantum mechanical Hilbert space[12]. In particular, the generalized Dirac
equation (4) can be interpreted, in T-isotopic terms, simply as the Dirac
equation for the isoket vector *|i)) of the isoHilbert space[12, 14, 16]. An
associated, hermitian conjugation is defined by A* = TATT-112]. It is
straightforward to verify that the (non-hermitian) operator X entering the
evolution equation appears to be isohermitian, X = X, under the definition
X =TB.

(ii) In the context of the BBPT model, the isostate 7% describes exactly
the free wave while the confining wave function comes with projection of the
isoHilbert space to the conventional Hilbert one (see [2] for detailed physical
analysis of the relation between the damped and free wave functions ¢ (z,t)
and ¢(x,t) in simple cases). In this respect, one can refer to intimate analogy
of this with the fiber bundle description of the motion of particle subjected to
a gauge interaction; see also gauge field interpretation|[2] of the non-hermitian
potential, and the connection between gauge theory and Lie-isotopic inner
product (isonorm)[17]. In essence, the gauging away of the pure imaginary
abelian gauge field A = VA(Z), A(%) = i7222, made in[2] corresponds to the
Lie-isotopic lifting of the Hilbert space with T = exp[i\(Z). The isostate T
reduces trivially to the conventional one when T — 1 or, equivalently, when
x — o0 (no hadronization or lepton case). In general case T' should be in
the center of the algebra A to obtain the free particle limit.

4 Discussion

From phenomenological point of view, gaussian representation of the damp-
ing for the wave function of the quarks is certainly a convention[2]. We note
that the specific form, in which the additional term in the generalized Dirac
equation (6) appears, requires rather definitely a gaussian function for 7" to
reproduce an effective linear confining BBPT potential. However, an essen-
tial point here is that a relation between the damped and free wave functions
does arise naturally under the Lie-isotopic lifting of the conventional opera-
tor algebra describing nonunitary evolution and leading to a modification of
the Dirac equation. On the other hand, both the damping of the free quark



wave function and nonunitary evolution are specific points of the hadroniza-
tion BBPT model. So, the formalism can provide an adequate interpretation,
in the proper quantum mechanical terms, of the hadronization model.

Some comments on justification of the lack of Lorentz invariance of the
model are in order. Despite of the formal covariance of the Eq.(4), we observe
that the resulting Eq.(6) becomes manifestly non-covariant when 7" is not a
scalar. This is clearly a consequence of the non-relativistic formulation of
the T-isotopic technique used in this paper. However, trying to achieve
an explicitly covariant description of the model, one can adopt the Eq.(4) as
starting point of consideration assuming 7" be a covariant hermitian operator.
The problem is then, schematically, to construct a relativistic formulation of
the isostates, on which an appropriately lifted Dirac operator acts. On the
other hand, in geometrical context T~ = exp(—z?/2z2) may play the role
of factor of the conformally flat metrics[16, 18].

It is worthwhile to note that an operator nature of the isotopic element
T can provide the energy dependence in the effective quark hadronization
potential empirically introduced and discussed in[3]; see also[4, 19]. The
particular form of the dependence (for the expected value), T' = T'(/s), can
be taken to fit the data for the ratio R = o(ete™ — hh)/(eTe” — ptu™)
in the energy region around and below 1 GeV, where, as it was emphasized
in[3], care should be exerted to extrapolate the BBPT model without, at
least, letting xy becomes function of energy. The effective distance xq has to
decrease for lower energies.

We conclude with some remarks. The analysis made in[17] allows us to
seek for another aspect in treating of the Lie-isotopic lifting. Namely, define
the vacuum by p|0) = |0), and consider the action, in configuration state, of
the generalized (one-dimensional) momentum operator p = —id/dq — d\/dg,
where A is a scalar function, A = A(¢), on the wave function of the vacuum

state T = (|0),
cd o dA
(—deq - %)T =0, (7)

The solution of the Eq.(7) is T = N exp(iA) where N is a normalization
constant. Under this definition of the vacuum, quantum states will be of the
form T'|¢), just as the representation of the isoket vectors. Consequently, the
underlying canonical commutation algebra, [g, p] = ¢, can be reformulated in
T-isotopic terms[17]. Thus the element 7' can be understood as a vacuum



state of the system described by the canonical commutation relations, with
the generalized momentum operator p, which is hermitian if A is pure imagi-
nary. Clearly this is a sort of ”minimal coupling” mentioned[2] in respect to
the gauge field interpretation of the BBPT model.

Finally, we note that the replacement of the usual Dirac delta function
conservation of three-momenta of the quarks produced by a gaussian distri-
bution announced[2] as the main practical consequence of the BBPT model
can be interpreted also as the result of general replacement of the usual norms
by the isonorms, where T' is the gaussian integration measure.
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